AE S THETI C Aesthetic Integration Ltd.
Level 30
INTEGRATION lsgeLeodenholl Street

London, EC3V 4AB
United Kingdom

November 18th, 2015

Brent J. Fields

Secretary

Securities and Exchange Commission
100 F Street, N.E.

Washington, D.C., 20549-1090

Re: Investors’ Exchange LLC Form 1 Application (Release No. 34-75925; File No. 10-222)

Dear Mr. Fields,

Although we have missed the official deadline for public comments, we would like to share our observations
on IEXs application and the public comments made thus far. In particular, we would like to bring your
attention to breakthrough scientific tools that will give the SEC unprecedented powers for the oversight of
exchanges and dark pools. We hope you will find our feedback useful.

The task ahead of the Commission is difficult. You must analyze IEX’s application to understand the possible
behaviors of their system design, and determine whether or not it satisfies your regulatory requirements. If
the application is successful and IEX obtains the status of an exchange, the Commission will be further

tasked with the oversight of IEX’s ongoing operations under its new mandate.

As recent regulatory actions by the SEC demonstrate, it currently takes the Commission considerable time
and resources to analyze a trading venue for flaws in its design and implementation. In recent public cases
(e.g., the UBS AT settlement from earlier this year), the cited wrongdoings and subsequent investigations
span many years. Processing applications like IEX’s and ensuring complex venue algorithms operate correctly
is a highly non-trivial task. But, with recent scientific breakthroughs in the field of ‘formal verification,’ this
process can be significantly improved and automated. Other safety-critical industries like avionics and
hardware manufacturing already rely upon related techniques to analyze and regulate their complex

algorithms. As an industry, we can learn a lot from their experiences.

Ultimately, the concerns raised in public comments center around the possible behavior of algorithms
implemented within IEX production systems. There is much speculation about their fairness and their more
general effects on market microstructure. For example, questions have been raised regarding access to
exchange data by the router component of the IEX brokerage, IEXS. Another set of questions concerns

transparency of order types discussed within the application.

By applying modern formal verification techniques developed precisely for reasoning about complex
algorithms, you can perform much deeper analyses, save taxpayers a lot of money, and significantly improve
the transparency and stability of our financial markets.

Pagelof 4

The Source of Complexity

In our view, the numerous questions surrounding the IEX application (and also the regulatory challenges

involved in processing such applications) stem from the following three fundamental issues:

1. The current approach for both disclosing and analyzing venue designs is inappropriate for the complexity
of modern financial markets. A venue design is an incredibly complex algorithm. Given its collection of
order types, transitions into volatility auctions, circuit-breakers, etc., the set of its possible behaviors
(‘state-space’) 1s virtually infinite. This state-space simply cannot be exhaustively examined without
powerful tools for the analysis of algorithms.

Asking venue operators to describe their designs in English prose significantly hinders their ability to
accurately describe their systems. Moreover, it significantly hinders your ability to analyze the design for
compliance with regulatory directives. To reiterate, this is not necessarily about ‘what’ exchanges and
dark pool operators should disclose, but rather ‘how’ they should disclose it. The format matters. English
prose is not a proper format for disclosing complex algorithms that must be analyzed for regulatory

requirements.

2. The Commission currently has no way to automatically connect venue designs to the actual venue
implementations. You simply cannot reconcile documents such as exchange by-laws or Form ATSs with
the actual post-trade data. You cannot ‘execute’ such a regulatory submission and check to see if post-
trade data matches the logic described in the venue design. This puts a significant burden on regulators
to analyze data, without a proper analysable specification of what the venue should be doing.

3. The industry lacks quantitative metrics for expressing the sufficiency of system testing. Many recent
regulatory directives discuss the requirement for ‘sufficient testing.” But no financial regulator has defined
precisely what that means. Financial regulators are behind the times in this respect. In avionics, for
example, regulators like the FAA and EASA give precise testing requirements for critical algorithms.

A Mathematically Rigorous Approach to Venue Compliance

At Aesthetic Integration, we’ve developed a product, Imandra, that can automatically analyze the design and
implementation of financial algorithms to detect regulatory violations. Imandra is powered by recent major

advances in the field of ‘formal verification.’

To give you a concrete example, we recently published a case study! covering this year’s settlement between
the SEC and UBS ATS. We took the current Form ATS from UBS’s website, encoded it in Imandra and
demonstrated how issues raised within the settlement can be detected automatically. This includes two major

issues raised by the Commission regarding ‘sub-penny pricing’ and undisclosed crossing constraints.

! “Case Study: 2015 SEC Fine Against UBS ATS” is available from www.aestheticintegration.com

Page 2 of 4

http://www.aestheticintegration.com

While we were writing this letter; a news story came out regarding the SEC’s push? for more transparency of
dark pools. The following proposal applies equally to exchanges and dark pools, and in our opinion, will

substantially improve the transparency, safety and stability of our financial markets:

1. Ask venue operators (in this case, IEX) to encode their venue specification (e.g,, its order types, conditions
for transitions into volatility auctions, delays, etc.) in a mathematically-precise specification language (i.c.,
a language with a formal semantics) such as the Imandra Modelling Language. In contrast to the English
prose in current submissions, this encoding will give you an unambiguous representation of the venue
matching algorithm that can then be mathematically analyzed. Using Imandra, for example, the

Commission can automatically analyze such a specification for key regulatory requirements.

2. Ask IEX to systematically monitor their production system for conformance to their regulatory
submission to ensure that their live venue does not deviate from the design disclosed to the SEC. This can
be automated by IEX simply running the (executable) formal design against their daily trading data,
checking to see that their production system’s behavior agrees with that of the model. Any time they

detect a deviation, they should communicate this deviation to the SEC.

3. Use Imandra (or other formal verification tools) to automatically analyze venue designs for potentially
unlawful behavior. Our recent white papers “Case Study: 2015 SEC Fine Against UBS ATS” and
“Transparent Order Priority and Pricing” have examples of such analysis.

For example, as part of our recent case study on UBS AT'S, we encoded in Imandra their Form ATS
submission (dated June 1st, 2015). It took us less than a week to do so. Then, we were able to use Imandra to

automatically analyze their design for key regulatory requirements with the push of a button.

As exchanges are typically more complex than dark pools, we expect a technical person knowledgeable of the

IEX design to need no more than a month to encode a model of their system.

About Formal Verification

We have published a white paper earlier this year, ‘Creating Safe and Fair Markets™, describing formal
verification, how it is currently applied to other industries, and the recent advances that power our
application of formal verification to financial markets. In summary, formal verification is an interdisciplinary
field of mathematics, computer science and artificial intelligence directed towards analyzing the behavior and
implementation of complex algorithms. It is widely relied upon within the US federal government. To list a

few examples:

- The FAA requires’® precise levels of system testing and formal verification within both the Common
Criteria Evaluation Assurance Levels and DO-178C® frameworks. Safety-critical algorithms such as air

2 http:/ /www.reuters.com/article/2015/11/17/sec-darkpools-idUSLIN13C11520151117

3 “Transparent Order Priority and Pricing” is available from www.aestheticintegration.com

+“Creating Safe and Fair Markets” is available from www.aestheticintegration.com

5 See https:/ /buildsecurityin.us-cert.gov/articles/best-practices/requirements-engineering/ the-common-criteria

6 See http://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_20-115C.pdf
Page 3 of 4

https://buildsecurityin.us-cert.gov/articles/best-practices/requirements-engineering/the-common-criteria
http://www.faa.gov/documentLibrary/media/Advisory_Circular/AC_20-115C.pdf
http://www.aestheticintegration.com
http://www.aestheticintegration.com
http://www.reuters.com/article/2015/11/17/sec-darkpools-idUSL1N13C1I520151117

traffic control, onboard autopilots and collision avoidance, and the security of aircraft local area networks
must satisfy these rigorous requirements before they are allowed to be deployed.

- The Department of Transportation has commissioned work’ on creating a formal verification framework
for regulating the safety of autopilot algorithms inside self-driving cars and other autonomous vehicles.

- NASA is one of the biggest drivers in the field. Among many other high-profile examples (Mars rovers,
etc.), NASA’s NextGen Air Traffic Management® framework relies on formal verification to ensure its
safety.

- The Department of Defense? leverages formal verification across numerous applications, including the

design and regulation of cryptographic algorithms and secure hypervisors.

With the staggering (and growing) complexity of modern venues and trading systems, we’re driven by the
fundamental improvements these algorithm analysis techniques will bring to our critical financial

infrastructure.

Conclusion

We thank you for the opportunity to comment on IEX’s application. In addition to the literature already

referenced, you may also wish to consult an internal SEC video recording (in SEC University) of our recent
invited lectures at SEC Headquarters (April 6th, 2015).

Sincerely

wn 11'74//4/\/ @‘75 O~ 77”"\

/

/

Denis Ignatovich Grant Passmore, PhD
Co-Founder, Al Co-Founder, Al

7 See http://utc.ices.cmu.edu/utc/ utc-tset-projects.html
8 See http://www.hq.nasa.gov/office/aero/asp/airspace/

9 See http://www.darpa.mil/program/high-assurance-cyber-military-systems

Page 4 of 4

http://www.darpa.mil/program/high-assurance-cyber-military-systems
http://utc.ices.cmu.edu/utc/utc-tset-projects.html
http://www.hq.nasa.gov/office/aero/asp/airspace

AESTHETIC%X][INTEGRATION

CREATING SAFE
AND FAIR MARKETS

X_] The Logic of Financial Risk ™

Creating Safe and Fair Markets

Denis A. Ignatovich and Grant O. Passmore
AESTHETIC INTEGRATION, LTD.
122 Leadenhall St., City of London, EC3V 4AB

www.aestheticintegration.com

Abstract

Many deep issues plaguing today’s financial markets are symptoms of a_fundamental problem: The complexity of

algorithms underlying modern finance has significantly outpaced the power of traditional tools used to design and regulate

them. When it comes to exhaustively reasoning about the behaviour of complex algorithms, the only viable solution is

Jformal verification, the use of deep advances in mathematical logic to automatically reason about algorithms and prove

properties of programs. Aesthetic Integration is bringing formal verification to financial markets for the first time. In this

white paper intended for the wider financial industry, we present our vision for the design and regulation of electronic

Sfinancial markets empowered by formal verification.

Modern financial markets are built on a staggeringly
complex tangle of algorithms. Competitive pressures
and economic recession (e.g., decreasing margins and
shrinking commission pools) have led to increasingly
opaque and unstable markets. The effects of glitches
and unfair advantages can be devastating, cratering the

confidence of investors and hurting the general public.

In recent years, regulators and the industry have made
tremendous progress in defining what safe and fair
markets are. What’s been missing is a way to analyse

and regulate the complex algorithms underlying them.

Flash crashes, questions of fairness and a lack of
transparent trading logic within dark pools are all
symptoms of a fundamental problem: When it comes
to designing and regulating electronic trading systems,
financial firms and regulators have not had the right

tools for the job.

The solution 1s formal verification, deep advances
in mathematical logic that allow us to automatically
reason about algorithms and prove properties of
programs. Powered by recent breakthroughs, we can at
last scale formal verification to the complex software

systems used in financial markets.

Aesthetic Integration’s Imandra product is software
that brings cutting edge formal verification to the
design and regulation of complex financial algorithms.
Imandra empowers a broad range of stakeholders —
from traders, engineers and compliance officers inside
financial firms to economists and enforcement teams
inside regulatory agencies — with the proper tools to
automatically analyse deep properties of safety, fairness

and transparency of critical financial algorithms.

THE BOTTOM LINE: Safety-critical industries
already rely upon formal verification to make
their algorithms safe. Modern financial markets
are safety-critical, too. Now that formal verifica-
tion technology scales to financial algorithms, the

industry and regulators must embrace it.

|. MANAGING THE INFINITE

Real-world financial algorithms are unfathomably
complex. A typical trading system may, at any given
time, accept hundreds of inputs and compute hundreds
of outputs. The set of its possible configurations — its
state space — is enormous. Faced with such a set of
possible scenarios, how can we even begin to grasp

Acknowledgement: We thank Michael Aikins of Chi-X Australia, Austin Gerig of the University of Oxford, Barbara Passmore, and Philip Stafford of the
Financial Times for their insightful comments on a draft of this white paper. All errors and omissions that remain are ours alone.

White Paper Al/1501 « April 2, 2015 « Creating Safe and Fair Markets 2

http:www.aestheticintegration.com

X] The Logic of Financial Risk ™

whether a trading system’s logic is robust enough to
protect itself from making bad decisions? We must
find a way to consider all possible behaviours of the
algorithm to determine what can possibly go wrong,
and to fix breaches of safety and fairness before they
affect markets.

The unprecedented power of formal verification stems
from its ability to automatically reason about such
enormous state spaces, even infinitely large ones. It
is quite remarkable, but mathematicians have been
reasoning about the behaviour of algorithms over
infinite state spaces for a very long time.

To gain some intuition, consider a sorting algorithm
F:list Z — list Z

that accepts a list of integer values as input and returns
as output the input list with its elements sorted in
ascending order. How can we prove this algorithm will
work correctly for all possible inputs? Certainly, we can
test F on finitely many cases. But there are an infinite
number of possible integer lists. Thus with testing,
there will always be some cases (in fact, infinitely many
cases) that we miss. Testing gives us no guarantee that
bugs do not exist; they may be hidden in difficult to
find corner cases not considered by our tests.

With formal verification, we can do (infinitely) better:
We can use the proof method of structural induction
to reason about F over the entire infinite state space
induced by the datatypes involved in its execution.

To prove F is correct for all possible inputs, it suffices
to prove two properties:

e P.: The output of F is always sorted.
e P, The output of F is always a permutation of

its input.

To prove both properties P, and P,, we can use a
particular structural induction principle, list induction,
arguing as follows:
e Base case: P holds of the simplest list.
e Induction step: If P, holds for an arbitrary list
X, then P, will also hold for a new list (n :: X)
obtained by prepending an arbitrary integer n to

X. Here, both n and X are symbolic constants.

If we mathematically prove these two statements,
then we have established that the sorting function will
work for all possible inputs. With suitable automated
theorem proving techniques, the construction of such
proofs can often be completely automated. Moreover,
if F is buggy (and thus no proof of correctness exists),
we can instead automatically derive counterexamples,
i.e., concrete input values that cause F to fail to meet
its specification. Please see the Appendix for a more
detailed discussion.

Now contrast this type of rigorous mathematical
reasoning with that of presenting several concrete
“test cases” for which the function F works and then
claiming that, since it works for those few, it should
work for all the other infinitely many cases. Such an
argument is clearly fallacious. Nevertheless, such
“testing” is currently common practice in finance.
Its obvious lack of scientific rigour is precisely why
systems break down.

To analyse safety and fairness properties of
complicated algorithms, we need powerful tools
that perform complex mathematical reasoning
to prove properties of computer programs
automatically. That is, we need the Ilatest
advances in formal verification.

Let us first examine formal verification’s use in
other safety-critical industries. Then we shall discuss
how related techniques can empower designers and
regulators with the proper tools for ensuring the
safety and fairness of algorithms underlying modern
electronic financial markets.

. HOW OTHER INDUSTRIES
DEAL WITH COMPLEX
ALGORITHMS

From the safety of autopilot systems navigating
commercial jets and self-driving cars to the correctness of
microchips in mobile phones, companies and governments
worldwide rely on formal verification to design and
regulate safety-critical hardware and software.

White Paper Al/1501 « April 2, 2015 « Creating Safe and Fair Markets 3

X] The Logic of Financial Risk ™

Historically, formal verification has been used most in
hardware (e.g., microprocessor) design and aerospace
(e.g., autopilot) software safety. With recent advances
in automated reasoning, it’s become possible to scale
automatic formal verification to reason about large-
scale software systems. For example, Microsoft now
requires device driver code for a piece of hardware
to pass Microsoft’s formal verification toolchain (the
Static Driver Verifier [2]) before the hardware can be
“Windows Certified.”

Companies like Intel, AMD and Centaur use formal
verification in nearly every step of their design
process. Much early momentum stems from a major
debacle in 1994 when Intel released their Pentium®
microprocessor with a bug in its floating point division
(FDIV) instruction. A massive recall and subsequent
refabrication cost Intel nearly $500,000,000. With
the stakes so high, Intel competitor AMD took the
pioneering step of engaging formal verification
practitioners to verify the correctness of their new
K5® processor FDIV design before fabrication, to
great success [4]. Today, major hardware companies
have large in-house formal verification teams and the
technology is integral to their design and development
cycles [9, 10].

In aerospace, formal verification is typically used
to verify the safety of complex software systems
underlying Air Traffic Management and on-board
Collision Avoidance for autonomous aircrafts and
autopilots. The NASA/NIA formal methods program
[1] is one of the leading forces. The aerospace
regulatory bodies (FAA in the USA, EASA in Europe)
specify use of FV-based (‘formal’ and ‘semi-formal’)
methods via the DO-178C and Common Criteria
software certification levels for safety-critical systems
[8, 13]. The US Department of Transportation has
recently commissioned related work for autonomous
robots and self-driving cars [12].

Il INTRODUCING IMANDRA

Imandra began with our realisation of a deep
connection between autopilot and financial algorithms.
In fact, we see financial markets as a vast collection of
autopilot trading algorithms making critical decisions

about transactions constantly. But there is currently a
significant divide between the safety of algorithms in
aerospace and finance. Our mission is to close this gap
— to bring tools that institutions like NASA use for
designing safe autopilot algorithms to finance.

But we aim to take formal verification even
further. For finance to adopt formal verification,
we believe strongly that it must be given a
highly automated solution. We aim to give
our clients the power of formal verification
without requiring them to master the complex
mathematics involved.

Formal verification is a vast field, with a diverse
collection of techniques designed to address many
different classes of problems across a multitude
of industries. This immense diversity is often
overwhelming, as techniques applicable to one
class of problems may fail to work on problems of
a (subtly) different nature. Moreover, in order to
reason automatically about financial algorithms, new
techniques were needed in many areas: nonlinear
arithmetic, automated induction, automated model-
finding and risk exposure datatypes to name a few.

We designed Imandra from the ground-up specifically
for financial algorithms, building upon decades of
formal verification research and designing many new
proprietary, patent-pending techniques for automated
reasoning about financial algorithms. Let us now
describe Imandra in more detail.

Imandra models are built using the Imandra Modelling
Language (IML). IML is both a high-performance
programming
mathematical logic in which properties of IML
programs can be stated and proved. Imandra’s reasoning
engine can be used to construct such proofs, or to
compute counterexamples and test-cases automatically.

language and a “finance-aware”

Imandra has the following key properties:

1. A formal semantics: This allows us to translate
any program written in IML into mathematics,
i.e., into systems of axioms precisely describing
the behaviour of the algorithm. Then, methods of

White Paper Al/1501 « April 2, 2015 « Creating Safe and Fair Markets 4

X] The Logic of Financial Risk ™

mathematical proof can be used to reason about
the algorithm’s behaviour.

2. A high-performance executable semantics: This
allows any program written in IML to be compiled
into high-performance executable code. In this way,
every IML model can be “run” on concrete data.
The IML compiler generates efficient code that can
then be used directly in production systems. The
executable core of IML is an axiomatised subset
of the OCaml programming language. Thus, high-
performance OCaml tools (compilers, debuggers,
etc.) can be brought to bear upon the efficient
execution and production use of IML models.

3. Automated reasoning: Powered by Imandra’s
reasoning engine, deep properties of IML
models can be formally proved or disproved
automatically. This is made possible by powerful
automated theorem proving technology, including
many recent advances in SMT, nonlinear decision
procedures and model-based automated induction
[6,4,5]. Imandra’s reasoning engine contains many
theorem proving algorithms developed specifically
for reasoning about fairness and safety properties
of trading systems and venues. Moreover, Imandra
can automatically derive high-coverage test suites
from system specifications.

To ease the modelling of financial computing systems,
Imandra is equipped with modelling libraries containing
generic models of venues, SORs and other trading
algorithms. To encode a given venue’s matching logic,
one need only customise a generic venue model with
the business logic specific to the venue of interest.
This insulates the user from a significant amount
of “boilerplate” modelling. For example, financial
constructs such as currencies, asset classes, prices,
sector exposures and nonlinear risk attributes of
derivatives are provided “out of the box” in IML.

V. REGULATORY OVERSIGHT

Modern financial institutions have to answer many
difficult questions regarding the safety, transparency
and fairness of their systems. To address these questions
rigorously, the actual algorithms involved must be
analysed.

For example: How can a financial intermediary prove
that its dark pool will never give preference to an internal
client (e.g., an internal trading desk) over an external
client (e.g., an investor)? The dark pool must have
access to certain client information for each order, e.g.,
to abide by client-specific constraints. Nevertheless,
one must ensure that it is not using that information to
change its matching decisions to disadvantage anyone.

With Imandra, concrete fairness principles such as a
lack of discriminatory and unlawful use of customer
information in pricing decisions can be encoded and
analysed for a dark pool automatically. If Imandra
proves the dark pool’s matching logic fair in this
sense, it will construct a mathematical proof that can
be independently verified. If Imandra instead finds a
counterexample — a scenario in which the matching
logic disadvantages a client on price, for example
— it will automatically translate this scenario into a
sequence of FIX® messages that cause the dark pool
to exhibit the unfair behaviour. Such counterexamples
are of tremendous value for finding and fixing bugs and
violations before they hit the markets.

We believe Imandra (and formal verification
more generally) will be of immense value to
financial regulators. In this section, we highlight
some key applications in the regulatory space.
For each application, we present three points: A
problem, an immediate solution and a long-term
vision. The immediate solutions are important
first steps that can already be accomplished with
the current features of Imandra, in consultation
with regulators and industry. The long-term
visions are more speculative and represent our
vision for the future of finance.

V.1 Designing Directives

Problem: Regulators need to design and communicate
directives on properties of financial algorithms. As
much as possible, these directives need to be precise
and unambiguous. Moreover, market participants need
seamless ways to incorporate these directives into their
design, testing and compliance processes.

White Paper Al/1501 « April 2, 2015 « Creating Safe and Fair Markets 5

X] The Logic of Financial Risk ™

Immediate solution: Imandra can be used to encode
regulatory principles that are easily expressible in
a “finance-aware” mathematical logic (IML). This
includes a broad class of directives giving specific
quantitative constraints on the allowed behaviour of
algorithms underlying trading systems, e.g., ensuring
that systems contain appropriate risk limits (e.g.,
no order is above trader’s limits), that orders have
maximum size (a system-wide constraint on how big
an order may be), or that the system does not sell short
a restricted stock. Many fairness regulations fall into
this class, such as those restricting the use of customer
data in matching and pricing decisions.

Regulators themselves can use Imandra to reason
about these encoded constraints, applying Imandra’s
reasoning engine to determine if certain constraints
are satisfied by model trading systems built in IML,
or to understand subtle relationships between different
directives (does directive A always imply directive B?).

This work can be done in consultation with Aesthetic
Integration, with Imandra being enhanced on-demand to
support a regulator’s needs. Simultaneously, Aesthetic
Integration can work in consultation with financial
firms, helping apply Imandra to analyse their systems
with respect to the formalised regulations.

Long-term vision: In the long-term, formal languages
like IML will become the lingua franca of financial
regulations and system specifications, and formal
verification systems like Imandra will be the “design
studio” for understanding the market effects of newly
proposed regulations.

Financial firms will provide regulators and their clients
with formal models of their trading systems and venues.
If regulators wish to understand the market effects
of a newly proposed regulation, they will be able to
run it against the latest collection of models of market
participants, to understand which ones would pass and
which ones would fail, and why.

Regulators will provide formalised regulations (and
proposed regulations) to the industry and general public.
Financial firms will be able to automatically import the
latest regulations into their development framework,

analysing both their current and prospective systems
for compliance automatically. The public will have
a precise medium for understanding, analysing and
proposing improvements to regulations.

V.2 Quantifiable Testing Standards

Problem: There is a consensus on the need
for testing financial computing systems. Major
recent regulatory directives clearly require it.
However one crucial detail has been missing —
a precise definition of “sufficient testing.”

Immediate solution: Armed with a formal model of
a financial computing system, the adequacy of a test
suite can be analysed in powerful ways. With Imandra,
market participants can use formalised regulatory
directives and specifications of their systems to generate
test suites with unprecedented coverage.

Sophisticated metrics are needed for evaluating the
adequacy of an algorithm’s test suite. In current (pre-
FV) practice, most test suites are written by hand with
no mathematical analysis done to determine which
aspects of the state space of the system are covered by
tests. Bugs hidden deep within complex combinations
of system logic are often completely missed by testing,
to profound negative effect.

In consultation with Aesthetic Integration, Imandra
models of the systems under test can be constructed,
and our test suite analysis and generation machinery
can be customised and integrated into a firm’s
development process. Market participants can then test
their production systems in far more thorough and cost
effective ways. Institutions can set quantifiable testing
standards and actually enforce them.

Long-term vision: In the long-term, regulators will
themselves set quantifiable standards of testing for
each of their regulatory principles.

For example, in arecent Aesthetic Integration case study

analysing a simple exchange matching logic, we’ve
shown that more than 400,000 separate components

White Paper Al/1501 « April 2, 2015 « Creating Safe and Fair Markets 6

X] The Logic of Financial Risk ™

of the (infinite) state space of the venue model must
be analysed to determine whether the matching logic
satisfies a particular fairness condition (pertaining to
the non-use of client information in match pricing).

For each formalised regulatory principle, regulators
will be able to set minimum testing standards for
production systems. Firms will be able to import
these automatically, use tools like Imandra to generate
such test suites, and send the resulting test results to
regulators for automated analysis.

V.3 Limking Féegulation With Financial
Economics

Problem: Regulators must have a feedback loop
between their directives and the overall performance
of the financial markets. They must evaluate whether
participants’ algorithms have been constrained too
much or not enough. If the algorithms are over-
constrained, little trading takes place and the markets
do not perform their ultimate function of transferring
capital and ownership between their participants. If
algorithms are under-constrained, then markets exhibit
events such as the “flash crash” and recurring concerns
of unlawful exploitation of microstructure effects.

Immediate solution: The issues of interactions of
numerous concurrent systems are not unique to
financial markets. Hardware manufacturing firms
rely on formal verification to reason about possible
sequences of concurrent events that would lead the
system to violate requirements.

In similar fashion, Imandra may be used to
reason about the behaviour of a finite collection
of trading algorithms interacting via venues. In
consultation with Aesthetic Integration, regulators
can use Imandra to design a “sandbox” of models
of various trading strategies and venues, and
to analyse (“abduct”) which constraints on the
algorithms and venues would prevent certain
classes of bad events. For example, one may
wish to avoid a sudden drop in market prices
driven by trading algorithms trying to “outrun”
each other. With Imandra, financial economists
are empowered with tools to undertake this
research.

Long-term vision: Our vision for the financial
markets is to have both participant firms create formal
specifications of their systems, and for the regulators to
have formal specifications of their regulatory directives.
With such an ecosystem, formal verification will be used
to provide full decision attribution analysis. Regulators
will be able to pinpoint exactly which elements of
trading logic (or lack thereof) led to specific economic
events under study. For example, the logic responsible
for creating/amending orders during events of extreme
market volatility will be quickly isolated using both
market data and formal models of the systems involved.

Joining formal algorithm specifications with CAT-like
data [14] will help close the feedback loop between
analysis of economic events and development of
regulatory directives. This will allow systematic
calibration of market microstructure regulations for
the right trade-off between transaction volume and
stability.

V.4 Demonstrating Compliance
(in an IP-aware manner)

Problem: Financial firms need to demonstrate to
regulators the compliance of their systems. This is
currently costly with much undesirable imprecision.
Intellectual property concerns further complicate this
process.

Immediate solution: Using Imandra, financial
institutions can formalise the most critical
components of their algorithmic systems, e.g.,
the matching logic of a venue or the risk gate
component of an SOR. In consultation with
Aesthetic Integration, key regulatory directives
and internal risk requirements can be formalised
in IML and the system specifications can be
subjected to
verification.

Imandra’s automated formal

Long-term vision: In the long-term, formal verification
will simplify many time consuming and expensive
compliance functions. For example, consider the
process of proving to a regulator that a dark pool is
compliant. Provided with formal specifications of
the systems and regulations, tools like Imandra will

White Paper Al/1501 « April 2, 2015 « Creating Safe and Fair Markets 7

X] The Logic of Financial Risk ™

generate the following:

e Foreach formally specified regulatory directive, a
mathematical proof that the system specification
is compliant. Such proofs are expressed in a
formal mathematical logic and can be verified
independently by a third party.

e Test suite coverage metrics and their results.

On the regulatory side, such reports will be processed
precise
documentation of a system’s business logic will be
automatically generated from the formal model.

and verified automatically. Moreover,

Intellectual property (IP) issues currently pose a
challenge for the regulators. Compromising trade
secrets guiding the logic of trading systems can expose
firms to adverse selection and hurt business.

With formal verification, this issue can be side-
stepped in a compelling way: From the regulators’
perspective, trade secrets and sensitive IP particular
to a high-performance system implementation are
irrelevant, provided these systems abide by regulatory
constraints. With formal verification, financial firms
can demonstrate:

e That they have an internal and formal specifica-
tion of their system,

e That they have formal mathematical proofs that
the specification meets directives on safety and
fairness provided by the regulators (also encoded
as mathematical objects),

e That they use the formal specification to produce
extensive test suites with appropriate coverage
metrics and that their implementation of the
specification successfully passes the tests.

All of this can be done without releasing particular sen-
sitive details of their production implementation. More-
over, comprehensive documentation of the algorithm’s
business logic can be produced automatically from the
specification when appropriate. If issues are later found
in the production implementation (issues that were not
caught with the high-coverage test suites), then the
formal specification can be used to pinpoint these is-
sues and drive fixes. Compared to current practices,
this gives regulators and financial firms a far more pre-
cise framework for reasoning about the compliance of
complex IP-laden production systems. Of course, if de-
sired, IP-sensitive details of production systems can be
subjected to formal verification as well, e.g., through
proving equivalence of a high-performance, low level
algorithm used in production with its low-performance,
high-level specification.

CLOSING REMARKS

Our mission is to provide financial markets and
regulators with powerful tools for managing the
complex algorithms underlying modern trading
systems and venues. Imandra by Aesthetic Integration
brings revolutionary advances in formal verification
to bear on financial algorithms, at last allowing us to
scale robust engineering methods used in other safety-

critical industries to finance.

We are driven by the fundamental improvements these
latest advances will bring to global financial markets.
Formal verification will eliminate significant portions
of the costs and resources required to operate and
regulate trading businesses. Precision and systematic
rigour will replace ambiguous and ad hoc approaches
to managing complicated trading systems.

Imandra will help you build safer, more stable and

compliant businesses. Together let’s make financial
markets safe and fair.

White Paper Al/1501 « April 2, 2015 « Creating Safe and Fair Markets 8

X] The Logic of Financial Risk ™

[1]
[2]

[3]

[6]

[7]

[8]

[12]

[13]

[14]

REFERENCES
The NASA Formal Methods Research Program: http://ti.arc.nasa.gov/nfm/.

Thomas Ball, Ella Bounimova, Vladimir Levin, Rahul Kumar, and Jakob Lichtenberg. The static driver
verifier research platform. In Computer Aided Verification, 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings, pages 119—122, 2010.

Robert S. Boyer and J Strother Moore. A Computational Logic Handbook. Academic Press Professional,
Inc., San Diego, CA, USA, 1988.

Bishop Brock, Matt Kaufmann, and J Strother Moore. ACL2 theorems about commercial microprocessors. In
Mandayam Srivas and Albert Camilleri, editors, Formal Methods in Computer-Aided Design, volume 1166 of
Lecture Notes in Computer Science, pages 275-293. Springer Berlin Heidelberg, 1996.

Leonardo de Moura and Nikolaj Bjerner. Satisfiability modulo theories: Introduction and applications.
Communications of the ACM, 54(9):69—77, September 2011.

Leonardo de Moura and Grant Olney Passmore. The Strategy Challenge in SMT Solving. Chapter in the book
Automated Reasoning and Mathematics: Essays in Memory of William W. McCune., Maria Paola Bonacina
and Mark Stickel, editors, pages 15—44. Springer-Verlag, Berlin, Heidelberg, 2013.

Leonardo de Moura and Grant Olney Passmore. Computation in real closed infinitesimal and transcendental
extensions of the rationals. In Maria Paola Bonacina, editor, CADE-24, volume 7898 of LNCS. Springer,
2013.

Gabriella Gigante and Domenico Pascarella. Formal methods in avionic software certification: The DO-
178C perspective. In Proceedings of the 5th International Conference on Leveraging Applications of Formal
Methods, Verification and Validation: Applications and Case Studies - Volume Part 1I, ISOLA’12, pages
205-215, Berlin, Heidelberg, 2012. Springer-Verlag.

Warren A. Hunt, Sol Swords, Jared Davis, and Anna Slobodova. Use of Formal Verification at Centaur
Technology. In David S. Hardin, editor, Design and Verification of Microprocessor Systems for High-
Assurance Applications, pages 65—88. Springer US, 2010.

Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse Whittemore, Sudhindra Pandav,
Anna Slobodova, Christopher Taylor, Vladimir Frolov, Erik Reeber, and Armaghan Naik. Replacing Testing
with Formal Verification in Intel Core I7® Processor Execution Engine Validation. In Proceedings of the
21st International Conference on Computer Aided Verification, CAV 09, pages 414—429, Berlin, Heidelberg,
2009. Springer-Verlag.

Matt Kaufmann, J Strother Moore, and Panagiotis Manolios. Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, Norwell, MA, USA, 2000.

Stefan Mitsch, Grant Olney Passmore, and André Platzer. Collaborative verification-driven engineering of
hybrid systems. Mathematics in Computer Science, 8(1):71-97, 2014.

Special Committee of RTCA. DO-178C, software considerations in airborne systems and equipment
certification, 2011.

US Securities and Exchange Commission. Rule 613: Consolidated Audit Trail. https://www.sec.gov/divisions/
marketreg/rule613-info.htm.

White Paper Al/1501 « April 2, 2015 « Creating Safe and Fair Markets

9

https://www.sec.gov/divisions
http://ti.arc.nasa.gov/nfm

X] The Logic of Financial Risk ™

APPENDIX: INDUCTIVE PROOFS OVER DATATYPES AND ALGORITHMS

|. Mathematical Induction
Consider a computable monadic predicate

P :IN — {True, False}

on the natural numbers. For any given n € N, P(n) is either True or False. Imagine we wish to prove that P(») holds for
alln € N, e, Vx € N(P(x)). How can we do it? One powerful proof method is given by the principle of mathematical

induction:
P(0) Vx € N(P(x) = P(x+1))
Vx € N(P(x))

This says: If we can prove both P(0)and Vx € IN (P(x) == P(x + 1)), then we can conclude Vx € IN(P(x)). Why
is this principle true?

Assume the hypotheses P(0) and Vx € IN (P(x) == P(x + 1)). We can derive a contradiction from the existence of
a counterexample to the conclusion Vx € IN(P(x)), i.e., from the assumption 3n € IN(—P(#n)). Assume there exists
such a counterexample. By well-foundedness of < on IN, there exists a leastw € IN s.t. =P(w). By our assumption
of P(0), we know w > 0. But then w — 1 € IN and thus P(w — 1). By our assumption of Vx € N (P(x) = P(x + 1)),
we know that P(w — 1) == P(w). But then P(w) holds, which is a contradiction. Thus, ¥x € IN(P(x))must hold.
In this way, we see we can derive the principle mathematical induction from the well-foundedness of the standard
strict ordering relation (<) on IN.

However, from the perspective of computation, there is another, even more direct way to derive the induction principle
for IN: By observing that IN is an inductively generated datatype.

Consider the following IML definition of a datatype nat of natural numbers:

type nat = Zero | S of nat

This definition says that a value x is a nat iff x = Zero or x = S(y)where ¥ is anat (S as in “successor”). We say
nat has two constructors: Zero and S. Moreover, Zero is a “base” constructor, while S is an “inductive” one. For
example, the following are both values of type nat:

Zero : nat
S(S(S(Zero))) : nat

The inductive generation of the datatype guarantees something very important: That there exist no ways of constructing
a value of type nat other than through these two constructors. This gives us a direct method for justifying the
following structural induction principle, obviously isomorphic to the principle of mathematical induction given
above:
P(Zero) Vx :nat (P(x) = P(S(x)))
Vx :nat(P(x))

It is easy to see how this principle can be derived mechanically from the definition of the datatype. To gain some
intuition for induction in general, let us use mathematical induction to prove a simple theorem often credited to Gauss.

White Paper Al/1501 « April 2, 2015 Creating Safe and Fair Markets 10

X] The Logic of Financial Risk ™

Theorem 1 (Gauss).

VnelN(i;)i - "("2“)>.

Proof.

Let P(n) denote the statement (Z}Loi = mny 1)) . We shall prove Vn € IN(P(n)).

Base case: P(0) is immediate as Ly = 0(02+1) =0.

Induction step: Assume P(n),ie., Y1 ,i= @ for some 1 € IN. By mathematical induction, it then suffices to

prove P(n + 1):
W (i) (n+2)

EO =
. nooo (),
Let us calculate. Note our use of our assumption P(n) to replace _i—0 & with VR

= U _n(n+1) _n?43n+2 (n+1)(n+2)
g)z—(§)1>+(n+l)— 5 +(n+1) = > = > .

Using automated theorem proving technology, Imandra can prove this theorem automatically. Moreover, if we have
errors in our theorem statements or function definitions, Imandra can help us find and fix these errors by automatically
deriving relevant counterexamples.

ll. List and Tree Induction

Consider now a datatype of lists of values of type &, where « is arbitrary. In IML notation, we can represent this type
as follows:

type ’a list = Nil | Cons of ’a * ’a list

For example, the following are concrete lists of int and string values, respectively:

[-7;2;3;5] = Cons(-7, Cons(2, Cons(3, Cons(5, Nil)))))) : int list
["a";"b";"c"] = Cons("a", Cons("b", Cons("c", Nil))) : string list

A structural induction principle for proving universal theorems over lists is as follows:

P(Nil) Vx :a list Vn:a (P(x) = P(Cons(n,x)))
Vx : o list(P(x))

To illustrate list induction, let us prove that the following simple append function is associative:
append(Nil,y) =y
append(Cons(x,xs),ys) = Cons(x,append(xs,ys))

Theorem 2. Vxyz (append(x, append(y,z)) = append(append(x,V),z)).

Proof. By induction on x. Let P(x) denote Vyz (append(x, append(y,z)) = append(append(x,¥),z)).

Base case: Show P (Nil). By definition of append, P(Nil) = Vyz (append(y,z) = append(y,z)),
which is obviously true.

Induction step: Assume P(X) (the “Induction Hypothesis”), and show P(Cons(c,X)). Then,

append(Cons(c, X), append(y, Z)) = Cons(c, append(X, append(y, Z))) by def
= Cons(c, append(append(X,), z)) by IH
= append(Cons(c, append(X,y)), z) by def

= append(append(Cons(c,X), v), z) by def
where def is the definition of append and /H is the Induction Hypothesis.

White Paper Al/1501 « April 2, 2015 « Creating Safe and Fair Markets 11

X] The Logic of Financial Risk ™

Indeed, this is a trivial automatic proof. However, this simple example illustrates an important point: Care must
be taken when choosing “how” one performs a proof by induction. This problem was solved by performing list
induction on x. But what if we had made a “wrong” choice and attempted to do list induction on y? When reasoning
about nontrivial algorithms, one often needs powerful induction heuristics for constructing the “right” instances of
the relevant induction principles. Besides carefully selecting the right (combination of) variable(s) upon which to
do induction, one often also needs to “generalise” the theorem being proved in order for the induction step to hold.
When automatically reasoning about financial algorithms, in addition to powerful techniques for inductive proof, one
also needs powerful decision procedures for many forms of linear and nonlinear arithmetic, boolean logic, theories
of bit-vectors and arrays and datatypes for representing risk exposures.

As a final example of structural induction, let us consider a datatype of binary trees defined as follows:

type ’a tree = Leaf of ’a | Tree of ’a * ’a tree * ’a tree

For example, the following is such a tree:

Tree(7, Leaf(2), Tree(11l, Leaf(9), Leaf(17))) : int tree

which might be visualised as:

From the definition of the datatype, we can derive the following principle of (e.g., integer) tree induction:

Vx : int(P(Leaf(x))) Vx,y : int tree Vn : int (P(x) A P(y) = P(Tree(n, x,y)))
Vx : int tree(P(x))

As an exercise, an interested reader might try to prove the following theorem by tree induction:

nwn_nodes(T) < Zheight(T)—H 1,

where num_nodes and height, both of type (x tree — nat), are defined in the natural way.

. More Powerful Forms of Induction

Though structural induction is often powerful enough for the analysis of financial algorithms, there are times when
more sophisticated induction principles are needed. One powerful method is that of recursion induction. Beyond
this, the most general form of induction is that of well-founded induction. The setting for well-founded induction is
the ordinals. Ordinals are equivalence classes of well-orderings. In set theory, we usually represent an ordinal by a
canonically chosen representative, using an encoding due to von Neumann (the “von Neumann ordinals”). In this
encoding, 0 is represented by @, and the successor of a von Neumann ordinal a is given by a U {a }.

White Paper Al/1501 « April 2, 2015 Creating Safe and Fair Markets 12

X] The Logic of Financial Risk ™

The standard strict ordering < on IN is called w (with < encoded as €), and is given as follows:

w=({2,{2},{0,{0}},{0,{2}, {2, {2}}},...1e) = ({0,1,2,3,...},<).
Let On be the class of ordinals. Every & & On can be uniquely represented in the form
wﬁlcl + wﬁzcz +...+ wﬁkck
where the arithmetical operations are those for ordinal arithmetic, given shortly. Every ordinal « is either a successor
ordinal, i.e., 38 € On(a = g+ 1) or a limit ordinal, the supremum of the set of smaller ordinals. For example, 3 and

2w + 7 are successor ordinals, while w and w*® are limits.

Ordinal Arithmetic:

a+0=«n

a+(B+1)=(a+pB)+1

a+ B =lims g (a+05) when B alimit ordinal

x-0=0

a-(p+1) = (a-p)+a

a- B =lims g (x-5) when B a limit ordinal
¥ =1
Pt = of . g
af = lims_p (a‘5> when B a limit ordinal

Induction principle:

Vae A[Vb e B(b<a= P(b))] = P(a)
Va € A(P(a))

Many powerful automated reasoning techniques exist for well-founded induction, especially those due to Boyer-
Moore [3] and found within the ACL2 theorem prover (for quantifier-free induction up to the ordinal €0) [11]. With
recent advances in automated model construction, these techniques can be significantly strengthened, e.g., by using
(non-standard) counterexamples to guide nuanced forms of inductive generalisation. Imandra’s automated induction

builds upon these many advances.

White Paper Al/1501 « April 2, 2015 Creating Safe and Fair Markets 13

X] The Logic of Financial Risk ™

ABOUT AESTHETIC INTEGRATION

Aesthetic Integration Limited is a financial technology company based in the City of London. Created by leading
innovators in software safety, trading system design and risk management, Al’s patent-pending formal verification
technology is revolutionising the safety, stability and transparency of global financial markets.

Imandra, the world’s first formal verification solution for financial markets:
e Radically reduces costs associated with trading system design, implementation and compliance
e Analyses correctness and stability of system designs for regulatory compliance (MIFID II and RegSCI)
e Uncovers non-trivial system design flaws and bugs in implementation

e C(ireates exhaustive test suites with quantifiable state-space coverage metrics

Founders
DENIS IGNATOVICH has necarly a decade GRANT PASSMORE has ten years’ industrial
of experience in trading, risk management, formal verification experience, and has been a key
quantitative modeling and complex trading system contributor to safety verification of algorithms at
design at a leading global investment bank. Cambridge, Carnegie Mellon, Edinburgh, Microsoft
Research and SRI.
He holds degrees in Computer Science and Finance
from the University of Texas at Austin and an MSc in He earned his PhD from the University of Edinburgh
Finance from the London School of Economics. and 1s a Life Member of Clare Hall, University of
Cambridge.
See our website for details: www.aestheticintegration.com
Contact

Contact(@AestheticIntegration.com
122 Leadenhall Street | City of London
EC3V 4AB | United Kingdom | +44 20 3773 6225

Legal Notice
Copyright © 2015 Aesthetic Integration Limited. All rights reserved.

This document is written for information purposes only and serves as an overview of services and products offered by Aesthetic
Integration Limited. References to companies and government agencies do not imply their endorsement, sponsorship or
affiliation with services and products described herein. Aesthetic Integration, Imandra and “The Logic of Financial Risk’ are
pending trademarks of Aesthetic Integration Limited. Imandra includes all or parts of the Caml system developed by INRIA
and its contributors. Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries. Intel and Pentium are trademarks of Intel Corporation in the U.S. and/or other
countries. AMD and K5 are trademarks of Advanced Micro Devices, Ltd. Centaur and VIA are registered trademarks of
Centaur Technologies, Inc. FIX is a trademark of FIX Protocol Limited.

White Paper Al/1501 « April 2, 2015 Creating Safe and Fair Markets 14

mailto:Contact@AestheticIntegration.com
http:www.aestheticintegration.com

AESTHETIC%X][INTEGRATION

CASE STUDY:
20lo SEC FINE
AGAINST UBS ATS

X] The Logic of Financial Risk ™

Case Study: 2010 SEC Fine
Against UBS ATS

Denis A. Ignatovich and Grant O. Passmore
Aesthetic Integration, Ltd.

Abstract

This report forms part of ALs application into the UBS Future of Finance Challenge (Banking Efficiency Challenge)*.

This year’s $14 million settlement® between the US Securities and Exchange Commission (SEC) and UBS over
allegations of misconduct in design, marketing and implementation of their ATS' (dark pool) highlights the financial
services industry’s ongoing struggles with the staggering (and growing) complexity of trading algorithms.

We demonstrate how UBS can leverage AIs groundbreaking formal verification technology to prevent further regulatory

fines related to the design and implementation of UBS dark pools. Powered by latest scientific breakthroughs, our product
Imandra 1s able to automatically prove properties of fairness and best execution of venue designs and test production
implementations with unprecedented rigowr. We demonstrate how Imandra can automatically detect and test for key recent
wssues raised by the SEC.

Furthermore, based on UBS’s publicly available Form ATS filing, we apply Imandra to highlight additional potential
issues® with UBS’s current dark pool design.

Finally, we discuss applications of Imandra to a wide range of financial algorithms, including routing systems and smart

contracts.

Chqnging The Process

The Roadmap

The SEC Order

Imandra and Formal Verification
Creating Imandra Model of UBS ATS

Order Types
Trading in Locked Markets

roving The Specification Is Compliant With Regulation
Sub-Penny Pricing
Crossing Constraints

— =
— O O O 0O N N 0 g U W

Transitivity of Order Ranking

—
N

Order Priority Rules

._.
Ul

Conclusion

"https://innovate.ubs.com/
2 http:/ /www.sec.gov/news/ pressrelease/2015-7.html
* This case study is based solely on the publicly available SEC documents and UBS Form ATS (dated June 1st, 2015).

2

Case Study: 2015 SEC Fine Against UBS ATS

The Logic of Financial Risk ™ X]

Chdnging The Process

In this report, we showcase our Imandra algorithm analysis technology by applying it to the recent §14mm
settlement between UBS and the SEC and analysing the design of UBS AT'S (as described in the publicly available
Form ATS dated June 1st, 2015) with respect to issues raised in the SEC Order. In addition, we use Imandra to
highlight some additional potential issues in the current design of UBS ATS.

Before we dive into the technical details, let us say a bit about Imandra and how it radically improves the process of
trading system design, delivery and regulation. At its core, Imandra empowers a broad range of stakeholders with
the ability to ask deep questions about an algorithm’s possible behaviours, to verify designs for safety, fairness and

regulatory principles, and to analyse implementations for conformance to their design®.

The SEC Order contains several quotes from UBS employees highlighting internal challenges in designing and

implementing the dark pool. Here’s one taken from page 10:

“If we confirm this pricing decision came from PTSS classic,” he wrote, “can we not spend tofo] much time
on research — we know classic has this issue, its being phased out, and we have dug through examples — tofo]

many times already.”

As we illustrate below, Imandra is more than a tool for fixing bugs in software. Imandra is a business tool connecting
various stakeholders responsible for the process of designing and delivering trading systems. By using Imandra,
businesses optimise their costs, while effectively managing technology and regulatory risks.

/-\

FIGURE 1 IMANDRA TRANSFORMING THE PROCESS OF CREATING TRADING SYSTEMS

In a typical investment bank, the process of designing, implementing and regulating trading systems requires the
collaboration of many players with a diverse collection of expertise. Despite their different perspectives, they all
require tools for the analysis of algorithms. Fundamentally, trading algorithms have become too complex to analyse by
hand. Imandra brings the hard science of formal verification to analyse algorithms and radically improves the overall

process.

* Please see our white papers “Creating Safe And Fair Markets” and “Transparent Order Priority and Pricing” available at www.aestheticintegration.com
for more background on Imandra.

Case Study: 2015 SEC Fine Against UBS ATS 3

X] The Logic of Financial Risk ™

Imandra prove ympliance

Clients pecification, creates test

[T —_— Compliance/
Regulators

IMANDRA

» Historical Data

FIGURE 2: AUTOMATING COMPLIANCE WITH IMANDRA

Business: With Imandra, the business has a complete and precise design that can be queried and analysed
automatically. This is similar to how an architect does not have to personally inspect every floor of a building

she designed to understand how many rooms there are. Business stakeholders can use Imandra to immediately
understand side-effects (including regulatory impact) of additional features such as new order types or client-specific

constraints, BEFORE development starts and systems go into production.

Technology: With Imandra, venue developers can have a precise specification of system functionality. This in turn
cuts down time needed to understand business requirements. Quality Assurance teams gain tremendous power
and efficiency with Imandra’s automated test suite generation enumerating important logical corner cases. Those
responsible for systems that send orders to venues can query the Imandra specification to answer key questions
about how the venue will communicate with their system. This is a radical improvement over current industry

practice, e.g., the error-prone manual deciphering of ambiguous PDF documents and marketing materials.

Regulatory functions (compliance officers): With Imandra, compliance officers can encode and enforce regulatory
directives and have full oversight of the regulatory status of the trading system design and implementation.

Counterexample Causing System to
- Violate the Property
Specification of Trading —

System (/ML) ‘\

: = ‘§

Safety And Fairness -
Properties (M) —

Mathematical High-Coverage
Proof Test Suite

FIGURE 3: IMANDRA OVERVIEW

4 Case Study: 2015 SEC Fine Against UBS ATS

The Logic of Financial Risk ™

With Imandra, businesses can optimise the costs and time they commit to making changes to their venue designs.
Regulators can automate analysis of the effects of modifications to venue designs and create a systematic approach
to regulating venues. Those designing and implementing systems (e.g., SOR’s) that connect to the venues can at last
have unambiguous descriptions of how those venues operate.

The Roadmap

The SEC Order

The SEC Order describes several issues regarding the design and operation of the UBS dark pool (in the US) from
2008 to 2012. At a high-level, the SEC raised two main complaints:

1. “Sub-penny’ pricing - functionality within the venue to process order prices with increments less than the statutory

minimum. The Order claims there were two reasons for such functionality:

A. Two order types that specifically allowed for this behaviour and were not disclosed to all clients of the venue
and the regulators.

B. Implementation (‘technical’) errors on behalf of the venue and the internal Smart Order Router (SOR)

system that submitted invalidly priced orders to the venue.

2. Anundocumented feature constraining matching of internal (originating within the algorithmic trading business)

order flow with outside ‘non-natural’ order flow from market makers (‘liquidity providers’).

We view these issues in a wider context of headline-making technical glitches and questions regarding venue
transparency within dark pools and exchanges. In our view, a significant portion of these problems is due to the
financial industry’s lack of modern tools for rigorous and scientifically-based analysis of financial algorithms.

Using the SEC Order containing the settlement details and the latest UBS Form AT'S, we demonstrate how
Imandra can significantly improve the designing, implementing and regulating of modern trading systems and
venues. With Imandra, firms like UBS can leverage major scientific breakthroughs to help ensure their venues do

not violate regulatory directives, and provide a fully transparent trading experience to its clients.

Imandra and Formal Verification

The issues raised by the SEC are symptoms of a fundamental problem: The complexity of financial algorithms has

significantly outpaced the power of traditional tools used to design and regulate them.

Finance is not alone in dealing with complex algorithms. For example, microprocessor designs and autopilot
algorithms are also complex. But the hardware and avionics industries have long realised that the state spaces of
their safety-critical systems are too complex to understand by hand, and that computer-based formal verification
techniques must be used to automatically reason about their possible behaviours. Formal verification now plays a
crucial role in both hardware and avionics processes for designing safety-critical systems. Regulators like the FAA
and the EASA require the use of rigorous mathematically-based methods for demonstrating the safety of autopilot
systems before they’re allowed to be deployed.

Imandra’s patent-pending technology brings formal verification to financial algorithms for the first time.

Case Study: 2015 SEC Fine Against UBS ATS 5

The Logic of Financial Risk ™

With four simple steps, UBS can apply Imandra to eliminate significant risks surrounding its dark pool:

l.

Encode the matching logic (i.e., as given in Form ATS) in the Imandra Modelling Language (IML). This allows
Imandra to reason about the possible behaviours of the venue, providing designers, developers, testers and
regulators with the ability to guery the trading system design for key properties of interest (“is it ever possible

for the matching algorithm to violate the following principle?”). Moreover, this encoding is very easy to do. As
discussed below, we have built a full-featured Imandra model of the UBS dark pool based upon the publicly
available Form ATS document dated June 1st, 2015. This takes only ~800 lines of IML code.

Encode properties of the model you wish to reason about in IML. Imandra will process them to verify that the
trading system design is compliant with regulatory directives (e.g., that it does not admit sub-penny pricing or

unlawful prioritisation of orders). We give examples below.

Based on the logic of the model, use Imandra’s proprietary Test Suite Generation (T'SG) technology to
generate high-coverage test suites to ensure production systems are thoroughly tested for conformance to their

verified design and documentation.

Use Imandra to compile a high-performance venue simulator and use it to automatically audit historical data
created by the dark pool. Such automated audits provide live monitoring and deep analysis of the performance
of the dark pool, ensuring that its behaviour is consistent with its design, documentation and marketing

materials.

These four steps will result in a vastly more thorough and tight governance process around designing and running the

dark pool. Moreover, it will save UBS considerable time and money.

Verification Goals

We refer to the properties we wish to verify about system designs as verification goals (VGs). This report will describe

four such goals. The first two goals are motivated by the SEC Order. The fourth comes from our proprietary set of

verification goals we developed to help our clients meet Regulation SCI and MIFID II requirements. The third is an

interesting discovery Imandra made as we encoded the model.

We shall consider the following verification goals:

6

“Sub-Penny” Pricing - will the venue accept prices in increments less than the tick size?

Crossing Constraints - for a typical dark pool, there are many valid reasons why two orders will not trade with each
other, even if their prices are compatible. However, there can also be invalid and illegal reasons for blocking a
match. Just looking at the post-trade data will make it very difficult to find these issues. With Imandra, you can

casily ensure that the venue will not illegally prohibit any two orders from trading with each other.

Transitivity of Order Ranking - when sorting a list of items (e.g., lists of integers, or orders within an order book,
etc.), it is critical that the comparison function used to rank items is transitive. For example, the normal “greater-
than” relation (“>”) on integers is transitive: if (a > b) and (b > c), then it always follows that (a > c). Because >
Is transitive, we can use it to sort a list of integers and receive a sensible output. When a comparison function
takes a more complicated form, such as an order_higher_ranked function used when sorting orders in an

order book, we must be careful to ensure that transitivity still holds. In case it doesn’t, then sorting based upon
that order ranking may give inconsistent and unpredictable results. Because of the noise and sheer amount

of transaction data, such issues are nearly impossible to isolate by looking at post-trade data alone. Imandra

analyses the design of the order sorting logic directly.

Case Study: 2015 SEC Fine Against UBS ATS

The Logic of Financial Risk ™

We examine the order priority logic described in the UBS Form AT'S, and show one way it implies that the
order ranking function is not transitive. Moreover, Imandra automatically derives concrete scenarios that

illustrate the transitivity violation.

4. Order Prionity - the US market microstructure is filled with numerous order types. They may have different
attributes and provide a tailored trading experience. But ultimately they must abide by common regulatory

requirements. One such requirement is that no order may jump the queue’.

Creating an Imandra Model of UBS ATS

Our complete Imandra model of UBS AT (as described in the referenced Form ATS) is roughly 800 lines of
IML code. In terms of the workload involved in creating it, we expect it should not take more than two weeks for a
person familiar with the actual specification of the venue. Because most venues share much in common with each
other in that they must maintain sorted order books, match orders, send back fills, etc., Imandra comes equipped
with “generic models” of venues. This allows one to quickly develop a specific venue model by only customising
aspects that are particular to that venue.

Our UBS model includes the following high-level components:

Order Types
Section 2.2 of the Form ATS declares the following:

“Order Types:

* Pegged Orders (both Resident and IOC Timelntorce). Pegging can be to the near, midpoint, or farside of the
NBBO. Pegged Orders may have a limit price.

* Limit Orders (both Resident and IOC TimelnForce)
* Market Orders (both Resident and IOC TimelnForce)

Conditional Indication Types:

* Pegged Conditional Indications (Resident TimelInForce only). Pegging can be to the near, midpoint,or far side of
the NBBO. Pegged Conditional Indications may have a limit price.

* Limit Conditional Indications (Resident TimelInForce only)”

Our first task is to define explicitly all of the different order types allowed in the venue. Figure 4 shows the IML

definitions for order types.

type order_type = MARKET | LIMIT | PEGGED | PEGGED_CI | LIMIT_CI

FIGURE 4: DECLARATION OF THE ORDER TYPES SUPPORTED BY THE ATS

Other parts of the IML model will assign operational meaning to these order types. Here we explicitly state the 5
types of orders that the venue supports. One of the great advantages of using Imandra is that it forces users to be
precise. For example, Imandra will not accept a model as complete unless the user describes how orders are priced

for each of declared order type.

Case Study: 2015 SEC Fine Against UBS ATS 7

X] The Logic of Financial Risk ™

Here’s an example of the code that calculates the effective price at which an order may trade:

let effective_price (side, o, mkt_data) =
let calc_pegged_price =
(match o.peg with
| FAR -> lessAggressive(side, o.price,
(1f side = BUY then mkt_data.nbo else mkt_data.nbb))
| MID -> lessAggressive(side, o.price, mid_point(mkt_data))
| NEAR -» lessAggressive(side, o.price,
(if side = BUY then mkt_data.nbb else mkt_data.nbo))
| NO_PEG -» o.price)
in
let calc_nbbo_capped_limit =
(1f side = BUY then lessAggressive(BUY, o.price, mkt_data.nbo)
else lessAggressive(SELL, o.price, mkt_data.nbb))
in
match o.order_type with
| LIMIT -= calc_nbbo_capped_limit
| MARKET =-»> 1f side = BUY then mkt_data.nbo else mkt_data.nbb
| PEGGED -> calc_pegged_price
| PEGGED_CI -» calc_pegged_price
| LIMIT_CI -» calec_nbbo_capped_limit
| FIRM_UP_PEGGED -> calc_pegged_price
| FIRM_UP_LIMIT -» calc_nbbo_capped_limit

FIGURE S: CALCULATION OF THE PRICE AT WHICH AN ORDER IS WILLING TO TRADE

Trading in Locked Markets
Section 4.3.1 describes “Locked and Crossed Markets”: “The UBS ATS will not effect a cross if the inside market

for the stock is crossed (where the bid price exceeds the offer price), but will effect a cross if the market for a stock is
locked (where the bid price is equal to the offer price); provided however, if instructed by an Order Originator, the
UBS AT'S will not execute a Pegged Order if the market for the stock is locked. In the event of an execution during
a locked market, the cross will be executed at the locked price.”

We first encode the classification of the current market data in IML:

type mkt_cond = MKT_NORMAL | MKT_CROSSED | MKT_LOCKED

let which_mkt (mkt_data) =
1f mkt_data.nbo = mkt_data.nbb then MKT_LOCKED
else 1f mkt_data.nbo < mkt_data.nbb then MKT_CROSSED
else MKT_NORMAL

FIGURE &: DEFINITION OF MARKET COND TIONS

We then use the classification to determine (based on client settings) whether a pegged order may trade:

let good_mkt (o, mkt_data) =
match which_mkt (mkt_data) with
| MKT_CROSSED -> false
| MKT_NORMAL -> true
| MKT_LOCKED =->
if (o.order_type = PEGGED) || (o.order_type = PEGGED_CI) then
not (o.cross_rest.cr_no_locked_nbbo)
else
true

FIGURE 7: COND TIONING TRADING ON CURRENT MARKET

8 Case Study: 2015 SEC Fine Against UBS ATS

The Logic of Financial Risk ™ X]

roving The Specification Is Compliant With Regulation

With our IML encoding of UBS ATS?, we can turn to reasoning about whether the design of the venue is compliant
with regulatory directives. We will later use results of this reasoning to construct high-coverage test suites for testing

production systems. But, first we must ensure that our design is correct and compliant!

Sub-Penny Pricing

Our first verification goal concerns the requirement that a venue cannot accept orders priced off tick. This requirement
1s to ensure that no order can gain queue priority by providing economically insignificant price improvement. Page 5
of the Form ATS states this clearly: “Subpenny executions will not occur except at the mid-point unless the stock is

trading below $1.00.”

(* Sub_penny_price: return true 1f the price is sub-penny, unless it's also the market mid-point, and false
otherwise *)
let sub_penny_price (p, tick_size, mkt_data) =
let is_sub_penny = (ceil (p /. tick_size)) < (floor (p /. tick_size)) in
if is_sub_penny then
not(price_eq (p, (mid_point (mkt_data))))
else false

(* Check_orders: iterate through a single side of the book and returns true if sub-penny order exists *)
let rec check_crders (side, orders, tick_size, mkt_data) =
match orders with
I [1 => false
| x::x5 -» sub_penny_price (effective_price (side, x, mkt_data), tick_size, mkt_data))
Il check_orders (side, xs, tick_size, mkt_data)

(* Not_in_book: return true if there exist no orders that are sub-penny priced and not equal to mid market *)
let not_in_book (s) =
let not_in_buys = check_orders (BUY, s.order_book.buys, s.static_data.tick_size, s.mkt_data) in
let not_in_sells = check_orders (SELL, s.order_book.sells, s.static_data.tick_size, s.mkt_data) in
(not_in_buys && not_in_sells)

(* Sub_penny_pricing: no sequence of system events may result in an order with sub-penny effective price *)
(* s and s' represent arbitrary symbolic states of the venue. ‘simulate’ symbolically executes the venue *)
verify sub_penny_pricing (s, s') =

(s' = simulate (s)) ==> not_in_book (s')

FIGURE 8: VERIFICATION GOAL FOR THE SUB-PENNY RULE

Figure lists the corresponding Imandra verification goal. For presentation purposes, we elide the conditioning on
$1.00 prices.

The key lines are the last two: they dictate that regardless of the venue’s initial state, once its matching and
communication logic processes all messages and trades all eligible orders, there will be no orders in the order book
with sub-penny prices. This covers infinitely many possible combinations of orders sent to the venue and operator
instructions to update any of the venue settings. (For more information on how Imandra is able to analyse infinite
state spaces, please see our white papers “Creating Safe and Fair Markets” and “Iransparent Order Pricing and
Priority”).

Is the encoding above the only way to define such a verification goal? Absolutely not. We leave the exact formulations
of VGs to regulators and the industry to work out together. Our purpose is to create a scientifically based and rigorous

medium for expressing and reasoning about financial algorithms.

’Disclaimer: the actual Form ATS is ambiguous for the reasons we discuss and hence our encoding may deviate from intentions of UBS. We have not consulted
with the firm in the course of designing the model.

Case Study: 2015 SEC Fine Against UBS ATS 9

X] The Logic of Financial Risk ™

Once Imandra verifies this goal, it can then be used to generate a high-coverage test suite to run against the actual

implementation of the model, i.e., the production system.

Crossing Constraints

Our second example highlights another issue raised by the SEC. Most dark pools, including the UBS AT'S, implement
rules restricting eligible (from the pricing perspective) orders from trading with each other. For example, such
functionality can stem from the need to restrict self-crossing for fund managers that have to execute their trades on
the market. That restriction is legal and expected, but there may be other restrictions that are not necessarily illegal,
but may become so if they are not disclosed to all participants and/or the regulators. This is the second issue raised

in the SEC case. The current Form ATS lists the current restrictions in Section 3.3 and we use these in our model.

The dark pool is a complicated trading engine with many inputs. How can we isolate a subset of these inputs and
mathematically verify that they are the only factors that may prohibit two eligible orders from trading with each other?

This is straightforward with Imandra’s Information Flow Analysis.

Intuitively, here’s how we will setup the verification goal:
- Imagine two possible scenarios (or “arbitrary states”) of the venue, S_1 and S_2.
= Letus fix Buy_I, Buy_2 and Sell_1, Sell_2 to be the best bids and best offers, respectively, for the two scenarios.

- Further, let us state that scenarios S_1 and S_2 are indistinguishable with respect to the list of restrictions declared
within Form ATS.

- Then, when we execute the model on those scenarios, they will either both result in fills or not execute. In other

words, the outcome will be the same between those two scenarios.

If this statement is true for all possible configurations of the venue and other inputs into the system, then we know
that those restrictions we isolated in the verification goal are the only restrictions that can prohibit execution of those
orders. It’s worth reiterating that there are different ways to encode such goals and this is just one of them.

verify isolate_cross_constraints (s_one, s_two, s_one_next, s_two_next, bl, b2, sl1, s2, fill_1, fill_2) =
(
(* Set our best bid and offer *)
Some bl = best_buy (s_one) &%
Some b2 = best_buy (s_two) &&
Some sl = best_sell (s_one) &&
Some s2 = best_sell (s_two) &&

(* Ensure that the crossing constraints match *)
bl.cross_restrict = b2.cross_restrict &&
sl.cross_restrict = s2.cross_restrict &&
s_one.mkt_data = s_two.mkt_data &&

(* Check that the orders can trade with each other *)
prices_cross (bl, sl1, s_one.mkt_data) &&
prices_cross (b2, s2, s_two.mkt_data) &&

(* The next states are generated by the model after it processes all messages and executes all eligible trades *)

s_one_next = simulate (s_one) &&
s_two_next = simulate (s_two) &&

10 Case Study: 2015 SEC Fine Against UBS ATS

The Logic of Financial Risk ™ X]

(* Identify corresponding fills in the next states *)
fill_1 = get_fill_bounded (bl, sl1, s_one_next.fill_log) &&
fill_2 = get_fill_bounded (b2, s2, s_two_next.fill_log)

D)

(* Then the fills should match - either they’re empty or the quantity and the price are exactly the same *)
==> (fills_match (fill_1, fill_2))

FIGURE S: VERIFICATION GOAL FOR CROSSING CONSTRAINTS

Transitivity of Order Ranking

Our original plan was to encode the two verification goals addressed in the SEC complaint, together with a family
of goals related to regulatory properties of various order types. The latter is part of our standard offering to our
clients for analysing their venue matching logic. As we were encoding the model, Imandra discovered subtle but
fundamental issues in UBS’s Form AT'S description of its dark pool matching logic. We describe our findings in this

section.

As already mentioned, transitivity is a basic requirement for ‘stable’ sorting operations. Simply put, it does not make
sense to sort a list of objects (e.g., a list of orders in an order book) if the criteria by which you are sorting them is

not transitive.

Recall the definition of transitivity: A relation (x R y) is transitive if and only if [(a R b) and (b R ¢)] always implies
that [(a R ¢)]. If you imagine “R” as being “>” (greater-than), then it’s easy to get an intuition for what transitivity
means: [(a > b) and (b > ¢)] always implies that [(a > ¢)].

Consider now a function order_higher_ranked that computes whether or not one order should be ranked above
another in the order book. If order_higher_ranked is not transitive, then you simply cannot use it to sort orders. If
you did, then the priorities given to different kinds of orders would not be stable, and clients would not be able to
anticipate matching behaviour. Such a flaw would be very difficult, if not impossible, to isolate by looking at the

post-trade data alone.

Figure 11 has the corresponding IML code encoding the order ranking logic described in the Form AT'S (subject to
our understanding). The function order_higher_ranked takes the side indicator, order X, order Y, the structure with

current NBBO and returns True if X takes priority over Y, False otherwise.

Once we submitted the code, Imandra replied within two seconds with an error: The order sorting function does
not make sense, as the relation used to sort orders is not transitive. We then asked Imandra to explicitly compute for

us a “counterexample,” 1.e., concrete inputs into order_higher_ranked that will cause it to violate transitivity:

verify rank_transitivity (side, orderl, order2, order3, mkt_data) =
(Corder_higher_ranked(side, orderl, orderz, mkt_data) &&
order_higher_ranked(side, order2, order3, mkt_data) &&

==

(order_higher_ranked(side, orderl, order3, mkt_data))

FIGURE 10: VERIFICATION GOAL FOR ORDER RANKING TRANSITIVIT

Case Study: 2015 SEC Fine Against UBS ATS | 11

X] The Logic of Financial Risk ™

let order_higher_ranked (side, ol, o2, mkt_data) =

let otl = ol.order_type in
let otZ = o2.order_type in

let eff_pricel = effective_price (side, ol, mkt_data) in
let eff_price2 = effective_price (side, o2, mkt_data) in

let wins_price = 1f side = BUY then (1f eff_pricel » eff_price2 then 1
else 1f eff_pricel = eff_price2 then @
else -1)
else (if eff_price2 < eff_price2 then 1
else if eff_pricel = eff_priceZ then @
else -1) 1in

let wins_time = if ol.time < o2.time then 1

else if ol.time = ozZ.time then @

else -1 1n

let ci (ot) = (ot = PEGGED_CI Il ot = LIMIT_CI) in

if wins_price = 1 then true
else 1f wins_price = -1 then false
else 1f ci (otl) && ci (ot2) then
if ol.leaves_qty > o2.leaves_qty then true
else 1f ol.leaves_qty < o2.leaves_qty then false
else (wins_time = 1)
else if wins_time = 1 then true
else if wins_time = -1 then false
else (match ¢ci (otl), ci (ot2) with
| false, false -s true
| false, true -> true
| true, false -> false)

FIGURE 11: ORDER RANKING FUNCTION

When Imandra was asked to prove the transitivity verification goal (Figure 10), it produced the following counter

example:

orderl = { order2 = { order3 = {
peg = NEAR; peg = NEAR; order_type = LIMIT_CI;
order_type = PEGGED; order_type = PEGGED_CI; qty = 8400;
qty = 1800; qty = 8400; price = 10.0;
price = 10.5; price = 12.0; time = 236;
time = 237; time = 237;
- .. };
3 3

FIGURE 12: COUNTEREXAMPLE TO ORDER RANKING TRANSITIVIT

Transitivity is violated because Order 1 takes priority over Order 2, and Order 2 takes priority over Order 3,
but Order 1 DOLES NOT take priority over Order 3! Why is this the case? Before we answer that question, it’s
important to note that all three orders have exactly the same effective price (the price at which they’re willing to
execute): 10.0. Note that the effective price is a function of the order type, peg level, limit price, NBBO, etc.

12 | Case Study: 2015 SEC Fine Against UBS ATS

The Logic of Financial Risk ™

Here’s the breakdown of why transitivity does not hold:

= Order I takes priority over Order 2 because: both orders share the same effective price and time, but Order 2
is a CI order. Therefore, Order 1 takes priority. Here’s the culprit: “For orders with the same price and time, priority is
gwen to Resident and 10C Orders over Conditional Indications.”

= Order 2 takes priority over Order 3 because: since they’re both CI orders and share the same effective price,
priority is then assigned based on quantity. Here’s the exact quote: “Invites are sent to the Order Originators of
Conditional Indications on a prionity based first on price, second on the quantity and third on the time of receipt by UBS ATS.”

= Order I DOES NOT take priority over Order 3 because: Order 3 is older (timestamp = 236) than Order 1
(timestamp = 237).

Why is this so important? If a ranking function used to sort the orders is not transitive, then the priority logic is

nonsensical and the results of “order sorting” cannot be trusted.

It’s worth reiterating that we have no knowledge of the actual implementation of the UBS ATS. We base our
analysis solely on the description given in Form ATS. But, if there is a discrepancy between the matching logic

described in Form ATS and the actual implementation, then this is of course a major problem as well.

This example exemplifies why modern finance needs automated tools like Imandra that can reason about

algorithms. The algorithms have become far too complex to manage by hand.

Order Priority Rules

Our last example demonstrates the application of Imandra to reasoning about order prioritisation rules. This
example is motivated by numerous debates as to the merits of the abundance of different order types across the
global markets. We argue that the complexity of modern market microstructure is not ‘bad’ in itself. The challenge,
however, is to have the appropriate tools that allow market participants to analyse the offered order types, ensure

they understand their benefits and that their systems are implemented to correctly interact with those venues.

Let us encode in IML a simple property: If the effective price of Order 1 is at least as aggressive as Order 2, and
given that they have the same arrival time, have the same quantity and share crossing constraints, then Order 1
should trade first. This makes economic sense - if you’re first and you’re more aggressive than the rest, then you
should always trade first (given that minimum quantity is met, you’re not restricted, etc.). Here’s how we would

encode such property as a verification goal in Imandra:

verify order_priority (side, ol, o2, 03, s, s', mkt_data) =
(s' = global_step(s) &&
trade_price_aggressive (side, ol, o2, mkt_data) &%
trade_size_aggressive (ol, o2) &R
other_const(ol, 02) &&
order_exists(ol, side, s) &&
order_exists(o2, side, s) &&
order_exists(o3, (opp_side (side)), s))
=
(first_to_trade (ol, o2, s'))

FIGURE 13: ORDER PRIORITY VERIFICATION GOAL

When we asked Imandra to verify this of the UBS ATS model, it came back with a counterexample. It

Case Study: 2015 SEC Fine Against UBS ATS | 13

X] The Logic of Financial Risk ™

Time priority Time priority

Jor price level NBBO Jor price level
ASK 5002 ASK
MID 50.01 MID

1 500 : Peg : Mkt MID @ 50,00 500 : Limit : 50.00 1
BID 5000 BID
2 500: Peg: Mkt NEAR
2 2,500 ; Limit ; 50,00
FIGURE 14: ORDER BOOK HAS AN INCOMING SELL ORDER
Time priority 2 Time priority
Jor price level NEBO Jor price level
ASK 50.02 ASK
MID 5001 MID
T 500 : Peg: Mkt MID @ 50.00 500 : Limit : 50.00 1
BID 5 5000 BID
3
FIGURE 15: PegLimitConstraintMode = 1
Time priovity Time priority
fir bica trual NBBG 55 Srici bt
ASK 5002 ASK
MID 5001 MID
1 500 : Limit : 50.00 1:
BID
3

FIGURE 16: PegLimitConstraintMode = 2

14 Case Study: 2015 SEC Fine Against UBS ATS

The Logic of Financial Risk ™ X]

turned out the VG failed because of a feature (if selected by the client) within the UBS ATS design that
prevents an eligible pegged to MID order from trading if its limit price is less aggressive than the market
MID. The sectting that allows for this is called “PegLimitConstraintMode” (see, e.g, examples 5 and 6 of
the UBS Form ATS). When clients request to set this value to 2, it will not trade. Alternatively, it will execute.

orderl = { order2 = { order3 = {
peg = MID; peg = NEAR; order_type = LIMIT;
order_type = PEGGED; order_type = PEGGED; qty = 588,
gty = 500; gty = 508; price = 50.00;
price = 50.00; time = 11; time = 12;
time = 10; P
pegged_mid_point_mode = Z; ¥ ¥
}s

FIGURE 17: COUNTEREXAMPLE TO ORDER PRIORITY VERIFICATION GOAL

Conclusion

With a focus on the UBS ATS and UBS’s recent $14mm settlement with the SEC, we have demonstrated how

Imandra radically improves the process of designing, implementing and regulating financial algorithms.

Our mission is to provide financial markets and regulators with powerful tools for managing the complex algorithms
underlying modern trading systems and venues. Imandra by Aesthetic Integration brings revolutionary advances in
formal verification to bear on financial algorithms, at last allowing us to scale robust engineering methods used in

other safety-critical industries to finance.
We are driven by the fundamental improvements Imandra will bring to global financial markets. Significant portions
of the costs and resources required to operate and regulate trading businesses will be eliminated. Precision and

systematic rigour will replace ambiguous and ad hoc approaches to managing complicated trading systems.

Imandra will help you build safer, more stable and compliant businesses. Together let’s make financial markets safe

and fair.

Case Study: 2015 SEC Fine Against UBS ATS | 15

The Logic of Financial Risk ™

16

About Aesthetic Imtegrqtiom

Aesthetic Integration Ltd. (Al) is a financial technology startup based in the City of London.

Created by leading innovators in software safety, trading system design and risk management, Al’s patent-
pending formal verification technology is revolutionising the safety, stability and transparency of global

financial markets.

Imandra

e Brings major advances in formal verification to bear on trading systems and venues, delivering fully
automatic analyses of your trading infrastructure

o Verifies correctness and stability of system designs for regulatory compliance

e Uncovers nontrivial bugs

e Cireates high-coverage test-suites

e Radically reduces associated costs

As you design and implement trading systems and venues, Imandra’s patent-pending technology helps you

lay a stronger foundation for your future.

Legal Notice
Copyright © 2015 Aesthetic Integration Limited. All rights reserved.

This document is written for information purposes only and serves as an overview of services and products
offered by Aesthetic Integration Limited and/or its affiliate companies. References to companies and
government agencies do not imply their endorsement, sponsorship or affiliation with services and products
described herein. Aesthetic Integration, Imandra and “The Logic of Financial Risk’™ are trademarks of
Aesthetic Integration Limited. Imandra includes all or parts of the Caml system developed by INRIA and
its contributors. FIX is a trademark of FIX Protocol Limited. UBS is a trademark of UBS AG.

Case Study: 2015 SEC Fine Against UBS ATS

