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Abstract
Many deep issues plaguing today’s financial markets are symptoms of  a fundamental problem: The complexity of  
algorithms underlying modern finance has significantly outpaced the power of  traditional tools used to design and regulate 
them. When it comes to exhaustively reasoning about the behaviour of  complex algorithms, the only viable solution is 
formal verification, the use of  deep advances in mathematical logic to automatically reason about algorithms and prove 
properties of  programs. Aesthetic Integration is bringing formal verification to financial markets for the first time. In this 
white paper intended for the wider financial industry, we present our vision for the design and regulation of  electronic 
financial markets empowered by formal verification. 

Modern financial markets are built on a staggeringly 
complex tangle of  algorithms. Competitive pressures 
and economic recession (e.g., decreasing margins and 
shrinking commission pools) have led to increasingly 
opaque and unstable markets. The effects of  glitches 
and unfair advantages can be devastating, cratering the 
confidence of  investors and hurting the general public.

In recent years, regulators and the industry have made 
tremendous progress in defining what safe and fair 
markets are. What’s been missing is a way to analyse 
and regulate the complex algorithms underlying them.

Flash crashes, questions of  fairness and a lack of  
transparent trading logic within dark pools are all 
symptoms of  a fundamental problem: When it comes 
to designing and regulating electronic trading systems, 
financial firms and regulators have not had the right 
tools for the job.

The solution is formal verification, deep advances 
in mathematical logic that allow us to automatically 
reason about algorithms and prove properties of  
programs. Powered by recent breakthroughs, we can at 
last scale formal verification to the complex software 
systems used in financial markets.

Aesthetic Integration’s Imandra product is software 
that brings cutting edge formal verification to the 
design and regulation of  complex financial algorithms. 
Imandra empowers a broad range of  stakeholders — 
from traders, engineers and compliance officers inside 
financial firms to economists and enforcement teams 
inside regulatory agencies — with the proper tools to 
automatically analyse deep properties of  safety, fairness 
and transparency of  critical financial algorithms.

THE BOTTOM LINE: Safety-critical industries 
already rely upon formal verification to make 
their algorithms safe. Modern financial markets 
are safety-critical, too. Now that formal verifica-
tion technology scales to financial algorithms, the 
industry and regulators must embrace it.

I. MANAGING THE INFINITE
Real-world financial algorithms are unfathomably 
complex. A typical trading system may, at any given 
time, accept hundreds of inputs and compute hundreds 
of outputs. The set of its possible configurations — its 
state space — is enormous. Faced with such a set of 
possible scenarios, how can we even begin to grasp 
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whether a trading system’s logic is robust enough to 
protect itself from making bad decisions? We must 
find a way to consider all possible behaviours of the 
algorithm to determine what can possibly go wrong, 
and to fix breaches of safety and fairness before they 
affect markets.

The unprecedented power of formal verification stems 
from its ability to automatically reason about such 
enormous state spaces, even infinitely large ones. It 
is quite remarkable, but mathematicians have been 
reasoning about the behaviour of algorithms over 
infinite state spaces for a very long time.

To gain some intuition, consider a sorting algorithm

that accepts a list of integer values as input and returns 
as output the input list with its elements sorted in 
ascending order. How can we prove this algorithm will 
work correctly for all possible inputs? Certainly, we can 
test F on finitely many cases. But there are an infinite 
number of possible integer lists. Thus with testing, 
there will always be some cases (in fact, infinitely many 
cases) that we miss. Testing gives us no guarantee that 
bugs do not exist; they may be hidden in difficult to 
find corner cases not considered by our tests.

With formal verification, we can do (infinitely) better: 
We can use the proof method of structural induction 
to reason about F over the entire infinite state space 
induced by the datatypes involved in its execution.

To prove F is correct for all possible inputs, it suffices 
to prove two properties:

 z P1: The output of F is always sorted.
 z P2: The output of F is always a permutation of 

its input.

To prove both properties P1 and P2, we can use a 
particular structural induction principle, list induction, 
arguing as follows:

 z Base case: P1 holds of the simplest list.
 z Induction step: If P1 holds for an arbitrary list 

X, then P1 will also hold for a new list (n :: X) 
obtained by prepending an arbitrary integer n to 

X. Here, both n and X are symbolic constants.

If we mathematically prove these two statements, 
then we have established that the sorting function will 
work for all possible inputs. With suitable automated 
theorem proving techniques, the construction of such 
proofs can often be completely automated. Moreover, 
if F is buggy (and thus no proof of correctness exists), 
we can instead automatically derive counterexamples, 
i.e., concrete input values that cause F to fail to meet 
its specification. Please see the Appendix for a more 
detailed discussion.

Now contrast this type of rigorous mathematical 
reasoning with that of presenting several concrete 
“test cases” for which the function F works and then 
claiming that, since it works for those few, it should 
work for all the other infinitely many cases. Such an 
argument is clearly fallacious. Nevertheless, such 
“testing” is currently common practice in finance. 
Its obvious lack of scientific rigour is precisely why 
systems break down.

To analyse safety and fairness properties of 
complicated algorithms, we need powerful tools 
that perform complex mathematical reasoning 
to prove properties of computer programs 
automatically. That is, we need the latest 
advances in formal verification.

Let us first examine formal verification’s use in 
other safety-critical industries. Then we shall discuss 
how related techniques can empower designers and 
regulators with the proper tools for ensuring the 
safety and fairness of algorithms underlying modern 
electronic financial markets.

II. HOW OTHER INDUSTRIES   
 DEAL WITH COMPLEX    
 ALGORITHMS
From the safety of autopilot systems navigating 
commercial jets and self-driving cars to the correctness of 
microchips in mobile phones, companies and governments 
worldwide rely on formal verification to design and 
regulate safety-critical hardware and software. 
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Historically, formal verification has been used most in 
hardware (e.g., microprocessor) design and aerospace 
(e.g., autopilot) software safety. With recent advances 
in automated reasoning, it’s become possible to scale 
automatic formal verification to reason about large-
scale software systems. For example, Microsoft now 
requires device driver code for a piece of hardware 
to pass Microsoft’s formal verification toolchain (the 
Static Driver Verifier [2]) before the hardware can be 
“Windows Certified.”

Companies like Intel, AMD and Centaur use formal 
verification in nearly every step of their design 
process. Much early momentum stems from a major 
debacle in 1994 when Intel released their Pentium® 
microprocessor with a bug in its floating point division 
(FDIV) instruction. A massive recall and subsequent 
refabrication cost Intel nearly $500,000,000. With 
the stakes so high, Intel competitor AMD took the 
pioneering step of engaging formal verification 
practitioners to verify the correctness of their new 
K5® processor FDIV design before fabrication, to 
great success [4]. Today, major hardware companies 
have large in-house formal verification teams and the 
technology is integral to their design and development 
cycles [9, 10].

In aerospace, formal verification is typically used 
to verify the safety of complex software systems 
underlying Air Traffic Management and on-board 
Collision Avoidance for autonomous aircrafts and 
autopilots. The NASA/NIA formal methods program 
[1] is one of the leading forces. The aerospace 
regulatory bodies (FAA in the USA, EASA in Europe) 
specify use of FV-based (‘formal’ and ‘semi-formal’) 
methods via the DO-178C and Common Criteria 
software certification levels for safety-critical systems 
[8, 13]. The US Department of Transportation has 
recently commissioned related work for autonomous 
robots and self-driving cars [12].

III.  INTRODUCING IMANDRA
Imandra began with our realisation of a deep 
connection between autopilot and financial algorithms. 
In fact, we see financial markets as a vast collection of 
autopilot trading algorithms making critical decisions 

about transactions constantly. But there is currently a 
significant divide between the safety of algorithms in 
aerospace and finance. Our mission is to close this gap 
— to bring tools that institutions like NASA use for 
designing safe autopilot algorithms to finance.

But we aim to take formal verification even 
further. For finance to adopt formal verification, 
we believe strongly that it must be given a 
highly automated solution. We aim to give 
our clients the power of formal verification 
without requiring them to master the complex 
mathematics involved.

Formal verification is a vast field, with a  diverse 
collection of techniques designed to address many 
different classes of problems across a multitude 
of industries. This immense diversity is often 
overwhelming, as techniques applicable to one 
class of problems may fail to work on problems of 
a (subtly) different nature. Moreover, in order to 
reason automatically about financial algorithms, new 
techniques were needed in many areas: nonlinear 
arithmetic, automated induction, automated model-
finding and risk exposure datatypes to name a few.

We designed Imandra from the ground-up specifically 
for financial algorithms, building upon decades of 
formal verification research and designing many new 
proprietary, patent-pending techniques for automated 
reasoning about financial algorithms. Let us now 
describe Imandra in more detail. 

Imandra models are built using the Imandra Modelling 
Language (IML). IML is both a high-performance 
programming language and a “finance-aware” 
mathematical logic in which properties of IML   
programs can be stated and proved. Imandra’s reasoning 
engine can be used to construct such proofs, or to 
compute counterexamples and test-cases automatically.

Imandra has the following key properties:
1.  A formal semantics: This allows us to translate 

any program written in IML into mathematics, 
i.e., into systems of axioms precisely describing 
the behaviour of the algorithm. Then, methods of 
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mathematical proof can be used to reason about 
the algorithm’s behaviour.

2.  A high-performance executable semantics: This 
allows any program written in IML to be compiled 
into high-performance executable  code. In this way, 
every IML model can be “run” on concrete data. 
The IML compiler generates efficient code that can 
then be used directly in production systems. The 
executable core of IML is an axiomatised subset 
of the OCaml programming language. Thus, high-
performance OCaml tools (compilers, debuggers, 
etc.) can be brought to bear upon the efficient 
execution and production use of IML models.

3.  Automated reasoning: Powered by Imandra’s 
reasoning engine, deep properties of IML 
models can be formally proved or disproved 
automatically. This is made possible by powerful 
automated theorem proving technology, including 
many recent advances in SMT, nonlinear decision 
procedures and model-based automated induction 
[6, 4, 5]. Imandra’s reasoning engine contains many 
theorem proving algorithms developed specifically 
for reasoning about fairness and safety properties 
of trading systems and venues. Moreover, Imandra 
can automatically derive high-coverage test suites 
from system specifications.

To ease the modelling of financial computing systems, 
Imandra is equipped with modelling libraries containing 
generic models of venues, SORs and other trading 
algorithms. To encode a given venue’s matching logic, 
one need only customise a generic venue model with 
the business logic specific to the venue of interest. 
This insulates the user from a significant amount 
of “boilerplate” modelling. For example, financial 
constructs such as currencies, asset classes, prices, 
sector exposures and nonlinear risk attributes of 
derivatives are provided “out of the box” in IML.

IV. REGULATORY OVERSIGHT
Modern financial institutions have to answer many 
difficult questions regarding the safety, transparency 
and fairness of their systems. To address these questions 
rigorously, the actual algorithms involved must be 
analysed.

For example: How can a financial intermediary prove 
that its dark pool will never give preference to an internal 
client (e.g., an internal trading desk) over an external 
client (e.g., an investor)? The dark pool must have 
access to certain client information for each order, e.g., 
to abide by client-specific constraints. Nevertheless, 
one must ensure that it is not using that information to 
change its matching decisions to disadvantage anyone.

With Imandra, concrete fairness principles such as a 
lack of discriminatory and unlawful use of customer 
information in pricing decisions can be encoded and 
analysed for a dark pool automatically. If Imandra 
proves the dark pool’s matching logic fair in this 
sense, it will construct a mathematical proof that can 
be  independently verified. If Imandra instead finds a 
counterexample — a scenario in which the matching 
logic disadvantages a client on price, for example 
— it will automatically translate this scenario into a 
sequence of FIX® messages that cause the dark pool 
to exhibit the unfair behaviour. Such counterexamples 
are of tremendous value for finding and fixing bugs and 
violations before they hit the markets.

We believe Imandra (and formal verification 
more generally) will be of immense value to 
financial regulators. In this section, we highlight 
some key applications in the regulatory space. 
For each application, we present three points: A 
problem, an immediate solution and a long-term 
vision. The immediate solutions are important 
first steps that can already be accomplished with 
the current features of Imandra, in consultation 
with regulators and industry. The long-term 
visions are more speculative and represent our 
vision for the future of finance.

IV.1  Designing Directives

Problem: Regulators need to design and communicate 
directives on properties of financial algorithms. As 
much as possible, these directives need to be precise 
and unambiguous. Moreover, market participants need 
seamless ways to incorporate these directives into their 
design, testing and compliance processes.
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Immediate solution: Imandra can be used to  encode 
regulatory principles that are easily expressible in 
a “finance-aware” mathematical logic (IML). This 
includes a broad class of directives giving specific 
quantitative constraints on the allowed behaviour of 
algorithms underlying trading systems, e.g., ensuring 
that systems contain appropriate risk limits (e.g., 
no order is above trader’s limits), that orders have 
maximum size (a system-wide constraint on how big 
an order may be), or that the system does not sell short 
a restricted stock. Many fairness regulations fall into 
this class, such as those restricting the use of customer 
data in matching and pricing decisions.

Regulators themselves can use Imandra to reason 
about these encoded constraints, applying Imandra’s 
reasoning engine to determine if certain constraints 
are satisfied by model trading systems built in IML, 
or to understand subtle relationships between different 
directives (does directive A always imply directive B?). 

This work can be done in consultation with Aesthetic 
Integration, with Imandra being enhanced on-demand to 
support a regulator’s needs. Simultaneously, Aesthetic 
Integration can work in consultation with financial 
firms, helping apply Imandra to analyse their systems 
with respect to the formalised regulations.

Long-term vision: In the long-term, formal languages 
like IML will become the lingua franca of financial 
regulations and system specifications, and formal 
verification systems like Imandra will be the “design 
studio” for understanding the market effects of newly 
proposed regulations.

Financial firms will provide regulators and their clients 
with formal models of their trading systems and venues. 
If regulators wish to understand the market effects 
of a newly proposed regulation, they will be able to 
run it against the latest collection of models of market 
participants, to understand which ones would pass and 
which ones would fail, and why.

Regulators will provide formalised regulations (and 
proposed regulations) to the industry and general public. 
Financial firms will be able to automatically import the 
latest regulations into their development framework, 

analysing both their current and prospective systems 
for compliance automatically. The public will have 
a precise medium for understanding, analysing and 
proposing improvements to regulations.

IV.2  Quantifiable Testing Standards

 
Problem: There is a consensus on the need 
for testing financial computing systems. Major 
recent regulatory directives clearly require it. 
However one crucial detail has been missing — 
a precise definition of “sufficient testing.”

Immediate solution: Armed with a formal model of 
a financial computing system, the adequacy of a test 
suite can be analysed in powerful ways. With Imandra, 
market participants can use formalised regulatory 
directives and specifications of their systems to generate 
test suites with unprecedented coverage. 

Sophisticated metrics are needed for evaluating the 
adequacy of an algorithm’s test suite. In current (pre-
FV) practice, most test suites are written by hand with 
no mathematical analysis done to determine which 
aspects of the state space of the system are covered by 
tests. Bugs hidden deep within complex combinations 
of system logic are often completely missed by testing, 
to profound negative effect. 

In consultation with Aesthetic Integration, Imandra 
models of the systems under test can be constructed, 
and our test suite analysis and generation machinery 
can be customised and integrated into a firm’s 
development process. Market participants can then test 
their production systems in far more thorough and cost 
effective ways. Institutions can set quantifiable testing 
standards and actually enforce them.

Long-term vision: In the long-term, regulators will 
themselves set quantifiable standards of testing for 
each of their regulatory principles.

For example, in a recent Aesthetic Integration case study 
analysing a simple exchange matching logic, we’ve 
shown that more than 400,000 separate components 
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of the (infinite) state space of the venue model must 
be analysed to determine whether the matching logic 
satisfies a particular fairness condition (pertaining to 
the non-use of client information in match pricing).

For each formalised regulatory principle, regulators 
will be able to set minimum testing standards for 
production systems. Firms will be able to import 
these automatically, use tools like Imandra to generate 
such test suites, and send the resulting test results to 
regulators for automated analysis.

IV.3  Linking Regulation With Financial  
 Economics
Problem: Regulators must have a feedback loop 
between their directives and the overall performance 
of the financial markets. They must evaluate whether 
participants’ algorithms have been constrained too 
much or not enough. If the algorithms are over-
constrained, little trading takes place and the markets 
do not perform their ultimate function of transferring 
capital and ownership between their participants. If 
algorithms are under-constrained, then markets exhibit 
events such as the “flash crash” and recurring concerns 
of unlawful exploitation of microstructure effects.

Immediate solution: The issues of interactions of 
numerous concurrent systems are not unique to 
financial markets. Hardware manufacturing firms 
rely on formal verification to reason about possible 
sequences of concurrent events that would lead the 
system to violate requirements.

In similar fashion, Imandra may be used  to 
reason about the behaviour of a finite collection 
of trading algorithms interacting via venues. In 
consultation with Aesthetic Integration, regulators 
can use Imandra to design a “sandbox” of models 
of various trading strategies and venues, and 
to analyse (“abduct”) which constraints on the 
algorithms and venues would prevent certain 
classes of bad events. For example, one may 
wish to avoid a sudden drop in market prices 
driven by trading algorithms trying to “outrun” 
each other. With Imandra, financial economists 
are empowered with tools to  undertake this 
research.

Long-term vision: Our vision for the financial 
markets is to have both participant firms create formal 
specifications of their systems, and for the regulators to 
have formal specifications of their regulatory directives. 
With such an ecosystem, formal verification will be used 
to provide full decision attribution analysis. Regulators 
will be able to pinpoint exactly which elements of 
trading logic (or lack thereof) led to specific economic 
events under study. For example, the logic responsible 
for creating/amending orders during events of extreme 
market volatility will be quickly isolated using both 
market data and formal models of the systems involved. 

Joining formal algorithm specifications with CAT-like 
data [14] will help close the feedback loop between 
analysis of economic events and development of 
regulatory directives. This will allow systematic 
calibration of market microstructure regulations for 
the right trade-off between transaction volume and 
stability.

IV.4  Demonstrating Compliance 
 (in an IP-aware manner)

Problem: Financial firms need to demonstrate to 
regulators the compliance of their systems. This is 
currently costly with much undesirable imprecision. 
Intellectual property concerns further complicate this 
process. 

Immediate solution: Using Imandra, financial 
institutions can formalise the most critical 
components of their algorithmic systems, e.g., 
the matching logic of a venue or the risk gate 
component of an SOR. In consultation with 
Aesthetic Integration, key regulatory directives 
and internal risk requirements can be formalised 
in IML and the system specifications can be 
subjected to Imandra’s automated formal 
verification.

Long-term vision: In the long-term, formal verification 
will simplify many time consuming and expensive 
compliance functions. For example, consider the 
process of proving to a regulator that a dark pool is 
compliant. Provided with formal specifications of 
the systems and regulations, tools like Imandra will 
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generate the following:

 z For each formally specified regulatory directive, a 
mathematical proof that the system specification 
is compliant. Such proofs are expressed in a 
formal mathematical logic and can be verified 
independently by a third party.

 z Test suite coverage metrics and their results. 

On the regulatory side, such reports will be processed 
and verified automatically. Moreover, precise 
documentation of a system’s business logic will be 
automatically generated from the formal model. 

Intellectual property (IP) issues currently pose a 
challenge for the regulators. Compromising trade 
secrets guiding the logic of trading systems can expose 
firms to adverse selection and hurt business.

With formal verification, this issue can be side-
stepped in a compelling way: From the regulators’ 
perspective, trade secrets and sensitive IP particular 
to a high-performance system implementation are 
irrelevant, provided these systems abide by regulatory 
constraints. With formal verification, financial firms 
can demonstrate:

 z That they have an internal and formal specifica-
tion of their system,

 z That they have formal mathematical proofs that 
the specification meets directives on safety and 
fairness provided by the regulators (also encoded 
as mathematical objects),

 z That they use the formal specification to produce 
extensive test suites with appropriate coverage 
metrics and that their implementation of the 
specification successfully passes the tests.

All of this can be done without releasing particular sen-
sitive details of their production implementation. More-
over, comprehensive documentation of the algorithm’s 
business logic can be produced automatically from the 
specification when appropriate. If issues are later found 
in the production implementation (issues that were not 
caught with the high-coverage test suites), then the 
formal specification can be used to pinpoint these is-
sues and drive fixes. Compared to current practices, 
this gives regulators and financial firms a far more pre-
cise framework for reasoning about the compliance of 
complex IP-laden production systems. Of course, if de-
sired, IP-sensitive details of production systems can be 
subjected to formal verification as well, e.g., through 
proving equivalence of a high-performance, low level 
algorithm used in production with its low-performance, 
high-level specification.

CLOSING REMARKS
Our mission is to provide financial markets and 
regulators with powerful tools for managing the 
complex algorithms underlying modern trading 
systems and venues. Imandra by Aesthetic Integration 
brings revolutionary advances in formal verification 
to bear on financial algorithms, at last allowing us to 
scale robust engineering methods used in other safety-
critical industries to finance.

We are driven by the fundamental improvements these 
latest advances will bring to global financial markets. 
Formal verification will eliminate significant portions 
of the costs and resources required to operate and 
regulate trading businesses. Precision and systematic 
rigour will replace ambiguous and ad hoc approaches 
to managing complicated trading systems.

Imandra will help you build safer, more stable and 
compliant businesses. Together let’s make financial 
markets safe and fair.
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APPENDIX: INDUCTIVE PROOFS OVER DATATYPES AND ALGORITHMS

 
I. Mathematical Induction 
Consider a computable monadic predicate

on the natural numbers. For any given  is either True or False. Imagine we wish to prove that  holds for 
all . How can we do it? One powerful proof method is given by the principle of mathematical 
induction:

This says: If we can prove both  and , then we can conclude . Why 
is this principle true? 

Assume the hypotheses  and . We can derive a contradiction from the existence of 
a counterexample to the conclusion , i.e., from the assumption . Assume there exists 
such a counterexample. By well-foundedness of < on , there exists a least . By our assumption 
of , we know  > 0. But then  and thus . By our assumption of , 
we know that . But then  holds, which is a contradiction. Thus,  must hold. 
In this way, we see we can derive the principle mathematical induction from the well-foundedness of the standard 
strict ordering relation (<) on . 

However, from the perspective of computation, there is another, even more direct way to derive the induction principle 
for : By observing that  is an inductively generated datatype.

Consider the following IML definition of a datatype nat of natural numbers:

This definition says that a value x is a nat iff    or   where  is a  (  as in “successor”). We say 
 has two constructors: Zero and S. Moreover, Zero is a “base” constructor, while  is an “inductive” one. For 

example, the following are both values of type : 

The inductive generation of the datatype guarantees something very important: That there exist no ways of constructing 
a value of type  other than through these two constructors. This gives us a direct method for justifying the 
following structural induction principle, obviously isomorphic to the principle of mathematical induction given 
above:

It is easy to see how this principle can be derived mechanically from the definition of the datatype. To gain some 
intuition for induction in general, let us use mathematical induction to prove a simple theorem often credited to Gauss.
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Theorem 1 (Gauss).

Proof.

Let  denote the statement   . We shall prove . 

Base case:  is immediate as 

Induction step: Assume   for some . By mathematical induction, it then suffices to 
prove P(n + 1):

 Let us calculate. Note our use of our assumption P(n) to replace with 

Using automated theorem proving technology, Imandra can prove this theorem automatically. Moreover, if we have 
errors in our theorem statements or function definitions, Imandra can help us find and fix these errors by automatically 
deriving relevant counterexamples.

II.  List and Tree Induction

Consider now a datatype of lists of values of type , where  is arbitrary. In IML notation, we can represent this type 
as follows:

For example, the following are concrete lists of int and string values, respectively:

A structural induction principle for proving universal theorems over lists is as follows:

To illustrate list induction, let us prove that the following simple append function is associative:

Theorem 2.  

Proof. By induction on . Let P( ) denote 

Base case: Show P . By definition of append, 
which is obviously true.

Induction step: Assume  (the “Induction Hypothesis”), and show . Then,

                

where  is the definition of append and IH is the Induction Hypothesis.
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Indeed, this is a trivial automatic proof. However, this simple example illustrates an important point: Care must 
be taken when choosing “how” one performs a proof by induction. This problem was solved by performing list 
induction on x. But what if we had made a “wrong” choice and attempted to do list induction on y? When reasoning 
about nontrivial algorithms, one often needs powerful induction heuristics for constructing the “right” instances of 
the relevant induction principles. Besides carefully selecting the right (combination of) variable(s) upon which to 
do induction, one often also needs to “generalise” the theorem being proved in order for the induction step to hold. 
When automatically reasoning about financial algorithms, in addition to powerful techniques for inductive proof, one 
also needs powerful decision procedures for many forms of linear and nonlinear arithmetic, boolean logic, theories 
of bit-vectors and arrays and datatypes for representing risk exposures. 

As a final example of structural induction, let us consider a datatype of binary trees defined as follows:

For example, the following is such a tree:

which might be visualised as:

From the definition of the datatype, we can derive the following principle of (e.g., integer) tree induction:

As an exercise, an interested reader might try to prove the following theorem by tree induction:

where num_nodes and height, both of type ( ), are defined in the natural way.

III.  More Powerful Forms of Induction

Though structural induction is often powerful enough for the analysis of financial algorithms, there are times when 
more sophisticated induction principles are needed. One powerful method is that of recursion induction. Beyond 
this, the most general form of induction is that of well-founded induction. The setting for well-founded induction is 
the ordinals. Ordinals are equivalence classes of well-orderings. In set theory, we usually represent an ordinal by a 
canonically chosen representative, using an encoding due to von Neumann (the “von Neumann ordinals”). In this 
encoding, 0 is represented by , and the successor of a von Neumann ordinal a is given by .



White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets       13

The standard strict ordering < on  is called  (with < encoded as ), and is given as follows:

Let On be the class of ordinals. Every  On can be uniquely represented in the form

where the arithmetical operations are those for ordinal arithmetic, given shortly. Every ordinal  is either a successor 
ordinal, i.e.,  or a limit ordinal, the supremum of the set of smaller ordinals. For example, 3 and  
2  + 7 are successor ordinals, while  and  are limits.

Ordinal Arithmetic:

Induction principle:

Many powerful automated reasoning techniques exist for well-founded induction, especially those due to Boyer-
Moore [3] and found within the ACL2 theorem prover (for quantifier-free induction up to the ordinal ) [11]. With 
recent advances in automated model construction, these techniques can be significantly strengthened, e.g., by using 
(non-standard) counterexamples to guide nuanced forms of inductive generalisation. Imandra’s automated induction 
builds upon these many advances.
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