
CREATING SAFE
AND FAIR MARKETS

White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets 2

Creating Safe and Fair Markets
Denis A. Ignatovich and Grant O. Passmore

AESTHETIC INTEGRATION, LTD.
122 Leadenhall St., City of London, EC3V 4AB

www.aestheticintegration.com

Abstract
Many deep issues plaguing today’s financial markets are symptoms of a fundamental problem: The complexity of
algorithms underlying modern finance has significantly outpaced the power of traditional tools used to design and regulate
them. When it comes to exhaustively reasoning about the behaviour of complex algorithms, the only viable solution is
formal verification, the use of deep advances in mathematical logic to automatically reason about algorithms and prove
properties of programs. Aesthetic Integration is bringing formal verification to financial markets for the first time. In this
white paper intended for the wider financial industry, we present our vision for the design and regulation of electronic
financial markets empowered by formal verification.

Modern financial markets are built on a staggeringly
complex tangle of algorithms. Competitive pressures
and economic recession (e.g., decreasing margins and
shrinking commission pools) have led to increasingly
opaque and unstable markets. The effects of glitches
and unfair advantages can be devastating, cratering the
confidence of investors and hurting the general public.

In recent years, regulators and the industry have made
tremendous progress in defining what safe and fair
markets are. What’s been missing is a way to analyse
and regulate the complex algorithms underlying them.

Flash crashes, questions of fairness and a lack of
transparent trading logic within dark pools are all
symptoms of a fundamental problem: When it comes
to designing and regulating electronic trading systems,
financial firms and regulators have not had the right
tools for the job.

The solution is formal verification, deep advances
in mathematical logic that allow us to automatically
reason about algorithms and prove properties of
programs. Powered by recent breakthroughs, we can at
last scale formal verification to the complex software
systems used in financial markets.

Aesthetic Integration’s Imandra product is software
that brings cutting edge formal verification to the
design and regulation of complex financial algorithms.
Imandra empowers a broad range of stakeholders —
from traders, engineers and compliance officers inside
financial firms to economists and enforcement teams
inside regulatory agencies — with the proper tools to
automatically analyse deep properties of safety, fairness
and transparency of critical financial algorithms.

THE BOTTOM LINE: Safety-critical industries
already rely upon formal verification to make
their algorithms safe. Modern financial markets
are safety-critical, too. Now that formal verifica-
tion technology scales to financial algorithms, the
industry and regulators must embrace it.

I. MANAGING THE INFINITE
Real-world financial algorithms are unfathomably
complex. A typical trading system may, at any given
time, accept hundreds of inputs and compute hundreds
of outputs. The set of its possible configurations — its
state space — is enormous. Faced with such a set of
possible scenarios, how can we even begin to grasp

Acknowledgement: We thank Michael Aikins of Chi-X Australia, Austin Gerig of the University of Oxford, Barbara Passmore, and Philip Stafford of the
Financial Times for their insightful comments on a draft of this white paper. All errors and omissions that remain are ours alone.

White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets 3

whether a trading system’s logic is robust enough to
protect itself from making bad decisions? We must
find a way to consider all possible behaviours of the
algorithm to determine what can possibly go wrong,
and to fix breaches of safety and fairness before they
affect markets.

The unprecedented power of formal verification stems
from its ability to automatically reason about such
enormous state spaces, even infinitely large ones. It
is quite remarkable, but mathematicians have been
reasoning about the behaviour of algorithms over
infinite state spaces for a very long time.

To gain some intuition, consider a sorting algorithm

that accepts a list of integer values as input and returns
as output the input list with its elements sorted in
ascending order. How can we prove this algorithm will
work correctly for all possible inputs? Certainly, we can
test F on finitely many cases. But there are an infinite
number of possible integer lists. Thus with testing,
there will always be some cases (in fact, infinitely many
cases) that we miss. Testing gives us no guarantee that
bugs do not exist; they may be hidden in difficult to
find corner cases not considered by our tests.

With formal verification, we can do (infinitely) better:
We can use the proof method of structural induction
to reason about F over the entire infinite state space
induced by the datatypes involved in its execution.

To prove F is correct for all possible inputs, it suffices
to prove two properties:

 z P1: The output of F is always sorted.
 z P2: The output of F is always a permutation of

its input.

To prove both properties P1 and P2, we can use a
particular structural induction principle, list induction,
arguing as follows:

 z Base case: P1 holds of the simplest list.
 z Induction step: If P1 holds for an arbitrary list

X, then P1 will also hold for a new list (n :: X)
obtained by prepending an arbitrary integer n to

X. Here, both n and X are symbolic constants.

If we mathematically prove these two statements,
then we have established that the sorting function will
work for all possible inputs. With suitable automated
theorem proving techniques, the construction of such
proofs can often be completely automated. Moreover,
if F is buggy (and thus no proof of correctness exists),
we can instead automatically derive counterexamples,
i.e., concrete input values that cause F to fail to meet
its specification. Please see the Appendix for a more
detailed discussion.

Now contrast this type of rigorous mathematical
reasoning with that of presenting several concrete
“test cases” for which the function F works and then
claiming that, since it works for those few, it should
work for all the other infinitely many cases. Such an
argument is clearly fallacious. Nevertheless, such
“testing” is currently common practice in finance.
Its obvious lack of scientific rigour is precisely why
systems break down.

To analyse safety and fairness properties of
complicated algorithms, we need powerful tools
that perform complex mathematical reasoning
to prove properties of computer programs
automatically. That is, we need the latest
advances in formal verification.

Let us first examine formal verification’s use in
other safety-critical industries. Then we shall discuss
how related techniques can empower designers and
regulators with the proper tools for ensuring the
safety and fairness of algorithms underlying modern
electronic financial markets.

II. HOW OTHER INDUSTRIES
 DEAL WITH COMPLEX
 ALGORITHMS
From the safety of autopilot systems navigating
commercial jets and self-driving cars to the correctness of
microchips in mobile phones, companies and governments
worldwide rely on formal verification to design and
regulate safety-critical hardware and software.

White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets 4

Historically, formal verification has been used most in
hardware (e.g., microprocessor) design and aerospace
(e.g., autopilot) software safety. With recent advances
in automated reasoning, it’s become possible to scale
automatic formal verification to reason about large-
scale software systems. For example, Microsoft now
requires device driver code for a piece of hardware
to pass Microsoft’s formal verification toolchain (the
Static Driver Verifier [2]) before the hardware can be
“Windows Certified.”

Companies like Intel, AMD and Centaur use formal
verification in nearly every step of their design
process. Much early momentum stems from a major
debacle in 1994 when Intel released their Pentium®
microprocessor with a bug in its floating point division
(FDIV) instruction. A massive recall and subsequent
refabrication cost Intel nearly $500,000,000. With
the stakes so high, Intel competitor AMD took the
pioneering step of engaging formal verification
practitioners to verify the correctness of their new
K5® processor FDIV design before fabrication, to
great success [4]. Today, major hardware companies
have large in-house formal verification teams and the
technology is integral to their design and development
cycles [9, 10].

In aerospace, formal verification is typically used
to verify the safety of complex software systems
underlying Air Traffic Management and on-board
Collision Avoidance for autonomous aircrafts and
autopilots. The NASA/NIA formal methods program
[1] is one of the leading forces. The aerospace
regulatory bodies (FAA in the USA, EASA in Europe)
specify use of FV-based (‘formal’ and ‘semi-formal’)
methods via the DO-178C and Common Criteria
software certification levels for safety-critical systems
[8, 13]. The US Department of Transportation has
recently commissioned related work for autonomous
robots and self-driving cars [12].

III. INTRODUCING IMANDRA
Imandra began with our realisation of a deep
connection between autopilot and financial algorithms.
In fact, we see financial markets as a vast collection of
autopilot trading algorithms making critical decisions

about transactions constantly. But there is currently a
significant divide between the safety of algorithms in
aerospace and finance. Our mission is to close this gap
— to bring tools that institutions like NASA use for
designing safe autopilot algorithms to finance.

But we aim to take formal verification even
further. For finance to adopt formal verification,
we believe strongly that it must be given a
highly automated solution. We aim to give
our clients the power of formal verification
without requiring them to master the complex
mathematics involved.

Formal verification is a vast field, with a diverse
collection of techniques designed to address many
different classes of problems across a multitude
of industries. This immense diversity is often
overwhelming, as techniques applicable to one
class of problems may fail to work on problems of
a (subtly) different nature. Moreover, in order to
reason automatically about financial algorithms, new
techniques were needed in many areas: nonlinear
arithmetic, automated induction, automated model-
finding and risk exposure datatypes to name a few.

We designed Imandra from the ground-up specifically
for financial algorithms, building upon decades of
formal verification research and designing many new
proprietary, patent-pending techniques for automated
reasoning about financial algorithms. Let us now
describe Imandra in more detail.

Imandra models are built using the Imandra Modelling
Language (IML). IML is both a high-performance
programming language and a “finance-aware”
mathematical logic in which properties of IML
programs can be stated and proved. Imandra’s reasoning
engine can be used to construct such proofs, or to
compute counterexamples and test-cases automatically.

Imandra has the following key properties:
1. A formal semantics: This allows us to translate

any program written in IML into mathematics,
i.e., into systems of axioms precisely describing
the behaviour of the algorithm. Then, methods of

White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets 5

mathematical proof can be used to reason about
the algorithm’s behaviour.

2. A high-performance executable semantics: This
allows any program written in IML to be compiled
into high-performance executable code. In this way,
every IML model can be “run” on concrete data.
The IML compiler generates efficient code that can
then be used directly in production systems. The
executable core of IML is an axiomatised subset
of the OCaml programming language. Thus, high-
performance OCaml tools (compilers, debuggers,
etc.) can be brought to bear upon the efficient
execution and production use of IML models.

3. Automated reasoning: Powered by Imandra’s
reasoning engine, deep properties of IML
models can be formally proved or disproved
automatically. This is made possible by powerful
automated theorem proving technology, including
many recent advances in SMT, nonlinear decision
procedures and model-based automated induction
[6, 4, 5]. Imandra’s reasoning engine contains many
theorem proving algorithms developed specifically
for reasoning about fairness and safety properties
of trading systems and venues. Moreover, Imandra
can automatically derive high-coverage test suites
from system specifications.

To ease the modelling of financial computing systems,
Imandra is equipped with modelling libraries containing
generic models of venues, SORs and other trading
algorithms. To encode a given venue’s matching logic,
one need only customise a generic venue model with
the business logic specific to the venue of interest.
This insulates the user from a significant amount
of “boilerplate” modelling. For example, financial
constructs such as currencies, asset classes, prices,
sector exposures and nonlinear risk attributes of
derivatives are provided “out of the box” in IML.

IV. REGULATORY OVERSIGHT
Modern financial institutions have to answer many
difficult questions regarding the safety, transparency
and fairness of their systems. To address these questions
rigorously, the actual algorithms involved must be
analysed.

For example: How can a financial intermediary prove
that its dark pool will never give preference to an internal
client (e.g., an internal trading desk) over an external
client (e.g., an investor)? The dark pool must have
access to certain client information for each order, e.g.,
to abide by client-specific constraints. Nevertheless,
one must ensure that it is not using that information to
change its matching decisions to disadvantage anyone.

With Imandra, concrete fairness principles such as a
lack of discriminatory and unlawful use of customer
information in pricing decisions can be encoded and
analysed for a dark pool automatically. If Imandra
proves the dark pool’s matching logic fair in this
sense, it will construct a mathematical proof that can
be independently verified. If Imandra instead finds a
counterexample — a scenario in which the matching
logic disadvantages a client on price, for example
— it will automatically translate this scenario into a
sequence of FIX® messages that cause the dark pool
to exhibit the unfair behaviour. Such counterexamples
are of tremendous value for finding and fixing bugs and
violations before they hit the markets.

We believe Imandra (and formal verification
more generally) will be of immense value to
financial regulators. In this section, we highlight
some key applications in the regulatory space.
For each application, we present three points: A
problem, an immediate solution and a long-term
vision. The immediate solutions are important
first steps that can already be accomplished with
the current features of Imandra, in consultation
with regulators and industry. The long-term
visions are more speculative and represent our
vision for the future of finance.

IV.1 Designing Directives

Problem: Regulators need to design and communicate
directives on properties of financial algorithms. As
much as possible, these directives need to be precise
and unambiguous. Moreover, market participants need
seamless ways to incorporate these directives into their
design, testing and compliance processes.

White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets 6

Immediate solution: Imandra can be used to encode
regulatory principles that are easily expressible in
a “finance-aware” mathematical logic (IML). This
includes a broad class of directives giving specific
quantitative constraints on the allowed behaviour of
algorithms underlying trading systems, e.g., ensuring
that systems contain appropriate risk limits (e.g.,
no order is above trader’s limits), that orders have
maximum size (a system-wide constraint on how big
an order may be), or that the system does not sell short
a restricted stock. Many fairness regulations fall into
this class, such as those restricting the use of customer
data in matching and pricing decisions.

Regulators themselves can use Imandra to reason
about these encoded constraints, applying Imandra’s
reasoning engine to determine if certain constraints
are satisfied by model trading systems built in IML,
or to understand subtle relationships between different
directives (does directive A always imply directive B?).

This work can be done in consultation with Aesthetic
Integration, with Imandra being enhanced on-demand to
support a regulator’s needs. Simultaneously, Aesthetic
Integration can work in consultation with financial
firms, helping apply Imandra to analyse their systems
with respect to the formalised regulations.

Long-term vision: In the long-term, formal languages
like IML will become the lingua franca of financial
regulations and system specifications, and formal
verification systems like Imandra will be the “design
studio” for understanding the market effects of newly
proposed regulations.

Financial firms will provide regulators and their clients
with formal models of their trading systems and venues.
If regulators wish to understand the market effects
of a newly proposed regulation, they will be able to
run it against the latest collection of models of market
participants, to understand which ones would pass and
which ones would fail, and why.

Regulators will provide formalised regulations (and
proposed regulations) to the industry and general public.
Financial firms will be able to automatically import the
latest regulations into their development framework,

analysing both their current and prospective systems
for compliance automatically. The public will have
a precise medium for understanding, analysing and
proposing improvements to regulations.

IV.2 Quantifiable Testing Standards

Problem: There is a consensus on the need
for testing financial computing systems. Major
recent regulatory directives clearly require it.
However one crucial detail has been missing —
a precise definition of “sufficient testing.”

Immediate solution: Armed with a formal model of
a financial computing system, the adequacy of a test
suite can be analysed in powerful ways. With Imandra,
market participants can use formalised regulatory
directives and specifications of their systems to generate
test suites with unprecedented coverage.

Sophisticated metrics are needed for evaluating the
adequacy of an algorithm’s test suite. In current (pre-
FV) practice, most test suites are written by hand with
no mathematical analysis done to determine which
aspects of the state space of the system are covered by
tests. Bugs hidden deep within complex combinations
of system logic are often completely missed by testing,
to profound negative effect.

In consultation with Aesthetic Integration, Imandra
models of the systems under test can be constructed,
and our test suite analysis and generation machinery
can be customised and integrated into a firm’s
development process. Market participants can then test
their production systems in far more thorough and cost
effective ways. Institutions can set quantifiable testing
standards and actually enforce them.

Long-term vision: In the long-term, regulators will
themselves set quantifiable standards of testing for
each of their regulatory principles.

For example, in a recent Aesthetic Integration case study
analysing a simple exchange matching logic, we’ve
shown that more than 400,000 separate components

White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets 7

of the (infinite) state space of the venue model must
be analysed to determine whether the matching logic
satisfies a particular fairness condition (pertaining to
the non-use of client information in match pricing).

For each formalised regulatory principle, regulators
will be able to set minimum testing standards for
production systems. Firms will be able to import
these automatically, use tools like Imandra to generate
such test suites, and send the resulting test results to
regulators for automated analysis.

IV.3 Linking Regulation With Financial
 Economics
Problem: Regulators must have a feedback loop
between their directives and the overall performance
of the financial markets. They must evaluate whether
participants’ algorithms have been constrained too
much or not enough. If the algorithms are over-
constrained, little trading takes place and the markets
do not perform their ultimate function of transferring
capital and ownership between their participants. If
algorithms are under-constrained, then markets exhibit
events such as the “flash crash” and recurring concerns
of unlawful exploitation of microstructure effects.

Immediate solution: The issues of interactions of
numerous concurrent systems are not unique to
financial markets. Hardware manufacturing firms
rely on formal verification to reason about possible
sequences of concurrent events that would lead the
system to violate requirements.

In similar fashion, Imandra may be used to
reason about the behaviour of a finite collection
of trading algorithms interacting via venues. In
consultation with Aesthetic Integration, regulators
can use Imandra to design a “sandbox” of models
of various trading strategies and venues, and
to analyse (“abduct”) which constraints on the
algorithms and venues would prevent certain
classes of bad events. For example, one may
wish to avoid a sudden drop in market prices
driven by trading algorithms trying to “outrun”
each other. With Imandra, financial economists
are empowered with tools to undertake this
research.

Long-term vision: Our vision for the financial
markets is to have both participant firms create formal
specifications of their systems, and for the regulators to
have formal specifications of their regulatory directives.
With such an ecosystem, formal verification will be used
to provide full decision attribution analysis. Regulators
will be able to pinpoint exactly which elements of
trading logic (or lack thereof) led to specific economic
events under study. For example, the logic responsible
for creating/amending orders during events of extreme
market volatility will be quickly isolated using both
market data and formal models of the systems involved.

Joining formal algorithm specifications with CAT-like
data [14] will help close the feedback loop between
analysis of economic events and development of
regulatory directives. This will allow systematic
calibration of market microstructure regulations for
the right trade-off between transaction volume and
stability.

IV.4 Demonstrating Compliance
 (in an IP-aware manner)

Problem: Financial firms need to demonstrate to
regulators the compliance of their systems. This is
currently costly with much undesirable imprecision.
Intellectual property concerns further complicate this
process.

Immediate solution: Using Imandra, financial
institutions can formalise the most critical
components of their algorithmic systems, e.g.,
the matching logic of a venue or the risk gate
component of an SOR. In consultation with
Aesthetic Integration, key regulatory directives
and internal risk requirements can be formalised
in IML and the system specifications can be
subjected to Imandra’s automated formal
verification.

Long-term vision: In the long-term, formal verification
will simplify many time consuming and expensive
compliance functions. For example, consider the
process of proving to a regulator that a dark pool is
compliant. Provided with formal specifications of
the systems and regulations, tools like Imandra will

White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets 8

generate the following:

 z For each formally specified regulatory directive, a
mathematical proof that the system specification
is compliant. Such proofs are expressed in a
formal mathematical logic and can be verified
independently by a third party.

 z Test suite coverage metrics and their results.

On the regulatory side, such reports will be processed
and verified automatically. Moreover, precise
documentation of a system’s business logic will be
automatically generated from the formal model.

Intellectual property (IP) issues currently pose a
challenge for the regulators. Compromising trade
secrets guiding the logic of trading systems can expose
firms to adverse selection and hurt business.

With formal verification, this issue can be side-
stepped in a compelling way: From the regulators’
perspective, trade secrets and sensitive IP particular
to a high-performance system implementation are
irrelevant, provided these systems abide by regulatory
constraints. With formal verification, financial firms
can demonstrate:

 z That they have an internal and formal specifica-
tion of their system,

 z That they have formal mathematical proofs that
the specification meets directives on safety and
fairness provided by the regulators (also encoded
as mathematical objects),

 z That they use the formal specification to produce
extensive test suites with appropriate coverage
metrics and that their implementation of the
specification successfully passes the tests.

All of this can be done without releasing particular sen-
sitive details of their production implementation. More-
over, comprehensive documentation of the algorithm’s
business logic can be produced automatically from the
specification when appropriate. If issues are later found
in the production implementation (issues that were not
caught with the high-coverage test suites), then the
formal specification can be used to pinpoint these is-
sues and drive fixes. Compared to current practices,
this gives regulators and financial firms a far more pre-
cise framework for reasoning about the compliance of
complex IP-laden production systems. Of course, if de-
sired, IP-sensitive details of production systems can be
subjected to formal verification as well, e.g., through
proving equivalence of a high-performance, low level
algorithm used in production with its low-performance,
high-level specification.

CLOSING REMARKS
Our mission is to provide financial markets and
regulators with powerful tools for managing the
complex algorithms underlying modern trading
systems and venues. Imandra by Aesthetic Integration
brings revolutionary advances in formal verification
to bear on financial algorithms, at last allowing us to
scale robust engineering methods used in other safety-
critical industries to finance.

We are driven by the fundamental improvements these
latest advances will bring to global financial markets.
Formal verification will eliminate significant portions
of the costs and resources required to operate and
regulate trading businesses. Precision and systematic
rigour will replace ambiguous and ad hoc approaches
to managing complicated trading systems.

Imandra will help you build safer, more stable and
compliant businesses. Together let’s make financial
markets safe and fair.

White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets 9

REFERENCES
[1] The NASA Formal Methods Research Program: http://ti.arc.nasa.gov/nfm/.

[2] Thomas Ball, Ella Bounimova, Vladimir Levin, Rahul Kumar, and Jakob Lichtenberg. The static driver
verifier research platform. In Computer Aided Verification, 22nd International Conference, CAV 2010,
Edinburgh, UK, July 15-19, 2010. Proceedings, pages 119–122, 2010.

[3] Robert S. Boyer and J Strother Moore. A Computational Logic Handbook. Academic Press Professional,
Inc., San Diego, CA, USA, 1988.

[4] Bishop Brock, Matt Kaufmann, and J Strother Moore. ACL2 theorems about commercial microprocessors. In
Mandayam Srivas and Albert Camilleri, editors, Formal Methods in Computer-Aided Design, volume 1166 of
Lecture Notes in Computer Science, pages 275–293. Springer Berlin Heidelberg, 1996.

[5] Leonardo de Moura and Nikolaj Bjørner. Satisfiability modulo theories: Introduction and applications.
Communications of the ACM, 54(9):69–77, September 2011.

[6] Leonardo de Moura and Grant Olney Passmore. The Strategy Challenge in SMT Solving. Chapter in the book
Automated Reasoning and Mathematics: Essays in Memory of William W. McCune., Maria Paola Bonacina
and Mark Stickel, editors, pages 15–44. Springer-Verlag, Berlin, Heidelberg, 2013.

[7] Leonardo de Moura and Grant Olney Passmore. Computation in real closed infinitesimal and transcendental
extensions of the rationals. In Maria Paola Bonacina, editor, CADE-24, volume 7898 of LNCS. Springer,
2013.

[8] Gabriella Gigante and Domenico Pascarella. Formal methods in avionic software certification: The DO-
178C perspective. In Proceedings of the 5th International Conference on Leveraging Applications of Formal
Methods, Verification and Validation: Applications and Case Studies - Volume Part II, ISoLA’12, pages
205–215, Berlin, Heidelberg, 2012. Springer-Verlag.

[9] Warren A. Hunt, Sol Swords, Jared Davis, and Anna Slobodova. Use of Formal Verification at Centaur
Technology. In David S. Hardin, editor, Design and Verification of Microprocessor Systems for High-
Assurance Applications, pages 65–88. Springer US, 2010.

[10] Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer, Jesse Whittemore, Sudhindra Pandav,
Anna Slobodová, Christopher Taylor, Vladimir Frolov, Erik Reeber, and Armaghan Naik. Replacing Testing
with Formal Verification in Intel Core I7® Processor Execution Engine Validation. In Proceedings of the
21st International Conference on Computer Aided Verification, CAV ’09, pages 414–429, Berlin, Heidelberg,
2009. Springer-Verlag.

[11] Matt Kaufmann, J Strother Moore, and Panagiotis Manolios. Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, Norwell, MA, USA, 2000.

[12] Stefan Mitsch, Grant Olney Passmore, and André Platzer. Collaborative verification-driven engineering of
hybrid systems. Mathematics in Computer Science, 8(1):71–97, 2014.

[13] Special Committee of RTCA. DO-178C, software considerations in airborne systems and equipment
certification, 2011.

[14] US Securities and Exchange Commission. Rule 613: Consolidated Audit Trail. https://www.sec.gov/divisions/
marketreg/rule613-info.htm.

White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets 10

APPENDIX: INDUCTIVE PROOFS OVER DATATYPES AND ALGORITHMS

I. Mathematical Induction
Consider a computable monadic predicate

on the natural numbers. For any given is either True or False. Imagine we wish to prove that holds for
all . How can we do it? One powerful proof method is given by the principle of mathematical
induction:

This says: If we can prove both and , then we can conclude . Why
is this principle true?

Assume the hypotheses and . We can derive a contradiction from the existence of
a counterexample to the conclusion , i.e., from the assumption . Assume there exists
such a counterexample. By well-foundedness of < on , there exists a least . By our assumption
of , we know > 0. But then and thus . By our assumption of ,
we know that . But then holds, which is a contradiction. Thus, must hold.
In this way, we see we can derive the principle mathematical induction from the well-foundedness of the standard
strict ordering relation (<) on .

However, from the perspective of computation, there is another, even more direct way to derive the induction principle
for : By observing that is an inductively generated datatype.

Consider the following IML definition of a datatype nat of natural numbers:

This definition says that a value x is a nat iff or where is a (as in “successor”). We say
 has two constructors: Zero and S. Moreover, Zero is a “base” constructor, while is an “inductive” one. For

example, the following are both values of type :

The inductive generation of the datatype guarantees something very important: That there exist no ways of constructing
a value of type other than through these two constructors. This gives us a direct method for justifying the
following structural induction principle, obviously isomorphic to the principle of mathematical induction given
above:

It is easy to see how this principle can be derived mechanically from the definition of the datatype. To gain some
intuition for induction in general, let us use mathematical induction to prove a simple theorem often credited to Gauss.

White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets 11

Theorem 1 (Gauss).

Proof.

Let denote the statement . We shall prove .

Base case: is immediate as

Induction step: Assume for some . By mathematical induction, it then suffices to
prove P(n + 1):

 Let us calculate. Note our use of our assumption P(n) to replace with

Using automated theorem proving technology, Imandra can prove this theorem automatically. Moreover, if we have
errors in our theorem statements or function definitions, Imandra can help us find and fix these errors by automatically
deriving relevant counterexamples.

II. List and Tree Induction

Consider now a datatype of lists of values of type , where is arbitrary. In IML notation, we can represent this type
as follows:

For example, the following are concrete lists of int and string values, respectively:

A structural induction principle for proving universal theorems over lists is as follows:

To illustrate list induction, let us prove that the following simple append function is associative:

Theorem 2.

Proof. By induction on . Let P() denote

Base case: Show P . By definition of append,
which is obviously true.

Induction step: Assume (the “Induction Hypothesis”), and show . Then,

where is the definition of append and IH is the Induction Hypothesis.

White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets 12

Indeed, this is a trivial automatic proof. However, this simple example illustrates an important point: Care must
be taken when choosing “how” one performs a proof by induction. This problem was solved by performing list
induction on x. But what if we had made a “wrong” choice and attempted to do list induction on y? When reasoning
about nontrivial algorithms, one often needs powerful induction heuristics for constructing the “right” instances of
the relevant induction principles. Besides carefully selecting the right (combination of) variable(s) upon which to
do induction, one often also needs to “generalise” the theorem being proved in order for the induction step to hold.
When automatically reasoning about financial algorithms, in addition to powerful techniques for inductive proof, one
also needs powerful decision procedures for many forms of linear and nonlinear arithmetic, boolean logic, theories
of bit-vectors and arrays and datatypes for representing risk exposures.

As a final example of structural induction, let us consider a datatype of binary trees defined as follows:

For example, the following is such a tree:

which might be visualised as:

From the definition of the datatype, we can derive the following principle of (e.g., integer) tree induction:

As an exercise, an interested reader might try to prove the following theorem by tree induction:

where num_nodes and height, both of type (), are defined in the natural way.

III. More Powerful Forms of Induction

Though structural induction is often powerful enough for the analysis of financial algorithms, there are times when
more sophisticated induction principles are needed. One powerful method is that of recursion induction. Beyond
this, the most general form of induction is that of well-founded induction. The setting for well-founded induction is
the ordinals. Ordinals are equivalence classes of well-orderings. In set theory, we usually represent an ordinal by a
canonically chosen representative, using an encoding due to von Neumann (the “von Neumann ordinals”). In this
encoding, 0 is represented by , and the successor of a von Neumann ordinal a is given by .

White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets 13

The standard strict ordering < on is called (with < encoded as), and is given as follows:

Let On be the class of ordinals. Every On can be uniquely represented in the form

where the arithmetical operations are those for ordinal arithmetic, given shortly. Every ordinal is either a successor
ordinal, i.e., or a limit ordinal, the supremum of the set of smaller ordinals. For example, 3 and
2 + 7 are successor ordinals, while and are limits.

Ordinal Arithmetic:

Induction principle:

Many powerful automated reasoning techniques exist for well-founded induction, especially those due to Boyer-
Moore [3] and found within the ACL2 theorem prover (for quantifier-free induction up to the ordinal) [11]. With
recent advances in automated model construction, these techniques can be significantly strengthened, e.g., by using
(non-standard) counterexamples to guide nuanced forms of inductive generalisation. Imandra’s automated induction
builds upon these many advances.

White Paper AI/1501 • April 2, 2015 • Creating Safe and Fair Markets 14

ABOUT AESTHETIC INTEGRATION

Aesthetic Integration Limited is a financial technology company based in the City of London. Created by leading
innovators in software safety, trading system design and risk management, AI’s patent-pending formal verification
technology is revolutionising the safety, stability and transparency of global financial markets.

Imandra, the world’s first formal verification solution for financial markets:
 z Radically reduces costs associated with trading system design, implementation and compliance
 z Analyses correctness and stability of system designs for regulatory compliance (MIFID II and RegSCI)
 z Uncovers non-trivial system design flaws and bugs in implementation
 z Creates exhaustive test suites with quantifiable state-space coverage metrics

Founders

DENIS IGNATOVICH has nearly a decade
of experience in trading, risk management,
quantitative modeling and complex trading system
design at a leading global investment bank.

He holds degrees in Computer Science and Finance
from the University of Texas at Austin and an MSc in
Finance from the London School of Economics.

GRANT PASSMORE has ten years’ industrial
formal verification experience, and has been a key
contributor to safety verification of algorithms at
Cambridge, Carnegie Mellon, Edinburgh, Microsoft
Research and SRI.

He earned his PhD from the University of Edinburgh
and is a Life Member of Clare Hall, University of
Cambridge.

Legal Notice
Copyright © 2015 Aesthetic Integration Limited. All rights reserved.

This document is written for information purposes only and serves as an overview of services and products offered by Aesthetic
Integration Limited. References to companies and government agencies do not imply their endorsement, sponsorship or
affiliation with services and products described herein. Aesthetic Integration, Imandra and `The Logic of Financial Risk’ are
pending trademarks of Aesthetic Integration Limited. Imandra includes all or parts of the Caml system developed by INRIA
and its contributors. Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in
the United States and/or other countries. Intel and Pentium are trademarks of Intel Corporation in the U.S. and/or other
countries. AMD and K5 are trademarks of Advanced Micro Devices, Ltd. Centaur and VIA are registered trademarks of
Centaur Technologies, Inc. FIX is a trademark of FIX Protocol Limited.

See our website for details: www.aestheticintegration.com

Contact
Contact@AestheticIntegration.com

122 Leadenhall Street | City of London
EC3V 4AB | United Kingdom | +44 20 3773 6225

